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Preface 
 
 

In fall 2014 NASA Associate Administrator for the Science Mission Directorate John Grunsfeld 
discussed with members of the Space Studies Board the possibility of a study of the value of NASA’s 
extended science missions and how the agency evaluates mission extension proposals, known as Senior 
Reviews. NASA’s Astrophysics Division has conducted Senior Reviews on a regular basis since the early 
1990s; the agency’s other divisions started following similar procedures afterwards, and they were 
formally required by the NASA Authorization Act of 2005, which states: 
 

The Administrator shall carry out biennial reviews within each of the Science divisions to assess 
the cost and benefits of extending the date of the termination of data collection for those missions 
that have exceeded their planned mission lifetime. 

 
Although that Act (which was reaffirmed in 2010) requires biennial reviews, it does not define 

how NASA should conduct them, leaving the details to NASA, which has codified its requirements in 
internal management and other policy documents. 

In summer 2015 NASA formally requested that the National Academies of Sciences, 
Engineering, and Medicine conduct a study on this subject. The Academies established a committee in 
fall 2015. The committee held an organizing teleconference in December and its first in-person meeting 
was held at the National Academies’ Keck Center in Washington, DC on February 1-2. The committee 
heard from the NASA Associate Administrator for Space Science as well as each of the division directors 
and other speakers. The committee’s second meeting was held at the Beckman Center in Irvine, 
California on March 2-4. At this meeting the committee heard from the former chairs of several Senior 
Review panels, as well as persons in charge of large and small missions currently in their extended phase. 
The committee’s third meeting was held at the National Academy of Sciences Building in Washington, 
DC on April 18-20 and was primarily devoted to writing this report.  
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Summary 
 
 
NASA operates a large number of space science missions, approximately three-quarters of which 

are currently in their extended operations phase. They represent not only a majority of operational space 
science missions, but a substantial national investment and vital national assets. They are tremendously 
scientifically productive, making many of the major discoveries that are reported in the media and that 
rewrite textbooks. For example, the Spitzer Space Telescope together with the Hubble identified a very 
distant galaxy where star formation proceeds much more rapidly than previously known in the early 
universe. The Aqua Earth observing spacecraft showed that the melting of the Greenland ice sheet in 
2012 was the most extensive surface melting measured to date. The STEREO spacecraft obtained the first 
360 degree images of the Sun. The Mars Exploration Rovers Spirit and Opportunity identified habitable 
hydrothermal environments on Mars. (These and many other scientific discoveries made by missions in 
their extended phase are discussed in Chapter 2.) 

The NASA Authorization Act of 2005 established a requirement for NASA to conduct reviews of 
missions in extended phase every 2 years. After a decade of this requirement, in summer 2015 NASA 
asked the National Academies of Sciences, Engineering, and Medicine to conduct a study on its extended 
science missions. In response, the Academies created the Committee on NASA Science Mission 
Extensions, which met in person and via conference call several times starting in December 2015. The 
committee was asked to evaluate the following: 
 

 The scientific benefits of mission extensions, 
 The current process for extending missions, 
 The current biennial requirement for mission extensions, 
 The balance between starting new missions and extending operating missions, and 
 Potential innovative cost-reduction proposals for extended missions.1 

 
NASA currently operates approximately 60 space science missions, of which approximately 45 

have finished their prime mission phase and have entered their extended phase.2 Extended missions 
provide a substantial return on investment for NASA and U.S. taxpayers, considering the very high 
science productivity of these extended missions at relatively low cost. 

Extended science missions have made major contributions to scientific discovery over many 
decades. They are valuable assets in NASA’s portfolio because they are already operating successfully 
and no longer require development or launch costs, but still provide excellent science at low incremental 
cost, needing only funding to conduct their operations and collect, process, and analyze their data. Simply 
put, approximately 75 percent of NASA’s space science missions operate on approximately 12 percent of 
the space science budget (Figures S.1 and S.2). 

                                                      
1 The full statement of task is included in Appendix A. 
2 Missions can consist of more than one spacecraft and it is possible in some cases for one or more spacecraft 

that is/are part of a mission to be extended while other/s is/are not. 
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insights for determining priorities and approaches for future exploration. Based on its assessment, the 
committee concluded that extended-phase science missions are a vital part of NASA’s overall science 
effort. 

The NASA Science Mission Directorate (SMD) undertakes a Senior Review process for 
astrophysics and planetary science missions in even-numbered years and Earth science and heliophysics 
missions in odd-numbered years. For spacecraft missions that continue to operate beyond their prime 
phase, the Senior Review is a valuable peer review process for recommending future support based on 
assessments of the scientific accomplishments and future projections, as well as the practical utility in 
meeting national and related interagency needs. NASA uses Senior Review recommendations as a major 
consideration when deciding on mission extensions. However, given budget constraints and uncertainties, 
the Senior Review may need to recommend termination of otherwise highly productive missions, 
although it is likely to express support for continuation of such missions if additional resources can be 
identified and allocated. The committee noted that the current NASA approach provides some flexibility 
in how the agency approaches and ultimately implements recommendations for mission termination, 
which at times allows for additional recommended missions to be continued. For example, in rare 
instances, non-government support for continuing missions has been provided by universities. 

The exact manner in which NASA conducts its Senior Reviews is based on the specific needs of 
each division. For example, NASA Earth Science Division missions and some Heliophysics Division 
missions have potential or realized non-research utility—meaning that they can be used to support other 
NASA or national needs. So in addition to the primary criterion of continued scientific productivity, 
evaluating the applied and operational use of NASA Earth science missions is a secondary factor in Earth 
Science Senior Review evaluation and extension decisions. In addition, the Astrophysics Division deems 
a few missions (currently the Hubble Space Telescope and Chandra X-ray Observatory) to be 
multipurpose observatories with broad scientific capabilities and has decided to review them separately 
from other missions in the division. Also, Planetary Science Division missions have variable transit times 
to their destinations, some taking many years before the beginning of the prime mission, which requires 
that the Senior Review process be applied to such missions on a case-by-case basis. These differing needs 
of the divisions highlight the need to allow the divisions flexibility in how they conduct their Senior 
Reviews, and no single template can be effectively applied to all of the divisions. 

Senior Review teams are established by NASA and consist of volunteers who issue their 
recommendations independent of the agency but rely on NASA to establish the timeline for conducting 
the review. At times, the Senior Review process has become too compressed and NASA has allocated 
insufficient time for some of the stages that are essential for an effective Senior Review. In particular, it is 
essential that  

 
 The Senior Review panels have adequate time to review the proposals, 
 Adequate time is also allocated to formulate questions for the mission teams, and 
 The proposal (mission) teams have sufficient time to respond to questions from the panels. 
 
Although NASA is required to conduct Senior Reviews every 2 years, the timing for launch of 

missions and their major events does not always correspond to the regular schedule for Senior Reviews. 
As a result, flexibility in scheduling the Senior Reviews (e.g., the ability to change the timing of 
individual reviews to avoid mission-critical events) is valuable for NASA’s science divisions. NASA 
divisions have at times conducted off-year reviews for some missions, determined by individual mission 
needs, or extended missions beyond the next 2-year cycle if the spacecraft is expected to terminate after 
the following review (i.e., Cassini). The committee determined that such flexibility has been important for 
the success of missions. 

Regular reviews of operating missions are essential to ensure that missions are productive and 
scientifically relevant and that the nation is obtaining value for its expenditure on these missions. 
However, the current 2-year cadence creates an excessive burden on NASA, mission teams, and the 
Senior Review panels. A 3-year cadence would ease this burden, while still enabling timely assessment of 
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the quality of the data returned from these missions and their potential for continued productivity. The 
committee judged that a 4- or 5-year cadence might be too long, given potential science developments 
and also changes in a mission’s health or overall capabilities. The committee also determined that other 
changes, such as reducing the number of pages required for proposals, would have a negligible or even 
negative effect on reducing the burden on proposal teams and NASA. 

An important component of this revised 3-year cadence is conducting regular assessments of the 
health of the spacecraft and instruments so that both the agency and proposers are aware of any potential 
issues that might result in shorter useful lifetimes. NASA’s science divisions already have provisions for 
doing this—for example, Earth sciences missions undergo annual technical health assessments. These 
assessments need only be moderate in scope, assessing changes since the last review, but the committee 
noted in its recommendation that a regular assessment is necessary in order to ensure confidence in the 
extension process. 

The committee recognizes that NASA alone cannot change this cadence and that it ultimately 
requires a change of language in NASA authorization bills. The committee believes that NASA can work 
with Congress to seek a change in the authorization language to allow for a 3-year cadence and that this 
will have a significant impact on reducing the burden and improving the overall efficiency of NASA’s 
mission extension process. 

In some divisions, there is greater prioritization of new or ground-breaking science, whereas in 
other divisions continuity of observations may be emphasized. Once again, the committee concluded that 
flexibility was important for NASA to maximize the efficiency and effectiveness of its mission extension 
process and obtain the maximum return for its investment. 

Overall, the committee was impressed with the way NASA SMD conducts its mission-extension 
review process and how much the four SMD divisions communicate amongst themselves regarding the 
reviews. With respect to the membership of the Senior Review panels, the committee concluded that there 
are several criteria that SMD can implement and standardize across the divisions. 

As the divisions have performed more Senior Reviews, the details of the process have become 
more stable from cycle to cycle. Stability includes consistency of information requested, proposal format, 
timing for the various stages, and so on. Maintaining best practices through regular interactions and 
feedback between NASA Headquarters, the mission teams, and review panels will help to ensure that this 
consistency is maintained while also providing opportunities for incremental improvements to the 
process.  

The committee was charged with evaluating the balance between prime and extended missions. 
Even though there is no formal definition for “optimal” balance, the committee concluded that the current 
balance between prime and extended missions is excellent, particularly with the high-quality science 
being returned at relatively modest cost for the extended missions. Extended missions represent only 
approximately 12 percent of the NASA SMD budget and provide a very high scientific return.  

The committee’s task also asked for an assessment of generally applicable current, and as yet 
unidentified, cost reductions that NASA could implement. In general, the committee concluded that many 
cost reduction options are already identified and implemented by both prime and extended missions. For 
example, colocating mission operations centers to a greater extent than is already done might provide 
added efficiency (and cost savings) in some cases. However, as the committee was told, the location and 
responsibilities of the science team are also important factors, and there might be added efficiencies and 
synergies when science and operations centers are colocated, so flexibility is required regarding sites for 
science and operations centers. Many extended missions have adopted innovative planning and operations 
approaches that translate to good or best practices (e.g., early awareness of the potential for extended 
missions while developing ground system and flight procedures, generating staffing plans, and preparing 
for reduced budgets during the extended phase) that may be applicable to other missions. Each mission 
has unique features, so no single approach will be optimal for all. 

The committee notes that repurposing extended missions to perform new science observations 
and missions is an extremely cost-effective approach for addressing new scientific opportunities and 
national interests. 
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With the expectation that most missions will be eligible for extension, investment in the 
development of standard procedures and templates during the prime phase can be a highly effective way 
to control long-term operations costs and limit the risks introduced by implementing new procedures 
specifically developed for extended operations. Some NASA divisions permit missions entering into or 
already in extended phase to accept increased risk, which is an inevitable consequence for aging 
spacecraft and science instruments and at least for some divisions, an acceptable option in the context of 
reduced budgets. The committee supports NASA’s current approach to establishing requirements and 
designs for prime phase and budgeting for extended missions, finding that it has many positive attributes 
and provides a very high return on investment. 

Experience and knowledge gained during the prime phase typically result in lower costs for 
extended mission operations, but there may be counteractive effects that can create upward pressure on 
operational costs. After the first two Senior Reviews, most missions have implemented all (or almost all) 
practical steps to reduce costs. Further budget cuts often then result in disproportionate cuts to project-
funded science activities, increasing risks that science will be diminished or not performed at all. 

This report consists of five chapters. Chapter 1 introduces the issues. Chapter 2 describes some of 
the valuable science discoveries that have been made during the extended phase of science missions. 
Chapter 3 discusses the Senior Review process and the requirement for conducting reviews every 2 years. 
Chapters 4 and 5 address the issues identified in the statement of task concerning balance and innovative 
approaches to reducing costs. The committee’s recommendations appear below and in their relevant 
chapters.  
 

Recommendation: NASA’s Science Mission Directorate (SMD) policy documents should 
formally articulate the intent to maximize science return by operating spacecraft beyond 
their prime mission, provided that the spacecraft are capable of producing valuable science 
data and funding can be identified within the SMD budget. (Chapter 5) 
 
Recommendation: NASA should strongly support a robust portfolio of extended-phase 
science missions. This support should include advance planning and sufficient funding to 
optimize the scientific return from continued operation of the missions. (Chapter 2) 
 
Recommendation: If a Senior Review recommends termination of a mission due to funding 
limitations rather than limited science return, NASA should allow the team to re-propose 
with an innovative, possibly less scientifically ambitious, approach at reduced operational 
cost and increased risk. (Chapter 3) 
 
Recommendation: NASA science divisions should be allowed to conduct reviews out of 
phase to allow for special circumstances and should have the added flexibility in organizing 
their reviews to take advantage of unique attributes of each division’s approach to science. 
(Chapter 3) 
 
Recommendation: Each of the divisions should ensure that their timelines allocate sufficient 
time for each stage of the Senior Review process, including a minimum of 6 to 8 weeks from 
distribution of proposals to the panels until the panel meets with the mission teams. The 
panels should have at least 4 weeks to review the proposals and to formulate questions for 
the mission teams, and the mission teams should be allocated at least 2 weeks to generate 
their responses to the panel questions. (Chapter 3) 
 
Recommendation: NASA should conduct full Senior Reviews of science missions in 
extended operations on a 3-year cadence. This will require a change in authorizing 
language, and NASA should request such a change from Congress. The Earth Science 
Division conducts annual technical reviews. The other divisions should assess their current 
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technical evaluation processes, which may already be sufficient, in order to ensure that the 
divisions are fully aware of the projected health of their spacecraft, while keeping these 
technical reviews moderate in scope and focused on changes since the preceding review. 
(Chapter 3) 
 
Recommendation: In order to obtain best value for money, NASA should encourage 
extended mission proposals to propose any combination of new, ground-breaking, and/or 
continuity science objectives. (Chapter 3) 
 
Recommendation: NASA’s Science Mission Directorate should assemble Senior Review 
panels that 

 Are comprised primarily of senior scientists knowledgeable about and experienced 
in mission operations so as to ensure that the operational context of the science 
being proposed and evaluated is considered in the review (individuals with 
operations and/or programmatic expertise may also be included as needed); 

 Are assembled early to avoid or accommodate conflicts of interest, and ensure 
availability of appropriate expertise;  

 Include some continuity of membership from the preceding Senior Review to reap 
advantage of corporate memory; 

 Include some early-career members to introduce new and important perspectives 
and enable them to gain experience for future Senior Reviews. 
(Chapter 3) 

 
Recommendation: NASA’s Science Mission Directorate division directors should continue 
to communicate among themselves to identify and incorporate best practices across the 
divisions into the Senior Review proposal requirements and review processes and 
procedures. (Chapter 3) 
 
Recommendation: In its guidelines to the proposal teams and the Senior Review panels, 
NASA should state its intention to solicit feedback from its proposal teams and review 
panels about the suitability of the proposal content and review process. After obtaining such 
feedback, NASA should respond and iterate as needed with stakeholders to improve the 
review process, where possible. (Chapter 3) 
 
Recommendation: NASA should continue to provide resources required to promote a 
balanced portfolio, including a vibrant program of extended missions. (Chapter 4) 
 
Recommendation: NASA should provide open communications and dissemination of 
information based on actual experience with extended missions so that all missions are 
aware of and able to draw on prior effective practices and procedures, applying them 
during development of ground systems and flight procedures, as well as when formulating 
staffing and budgetary plans for the prime and extended-mission phases. (Chapter 5) 
 
Recommendation: NASA should continue to encourage and support extended missions that 
target new approaches for science and/or for national needs, as well as extended missions 
that expand their original science objectives and build on discoveries from the prime phase 
mission. (Chapter 5) 
 
Recommendation: NASA should continue to assess and accept increased risk for extended 
missions on a case-by-case basis. The headquarters division, center management, and the 
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extended-mission project should discuss risk posture during technical reviews and as part 
of the extended mission and subsequent Senior Review proposal preparation process and 
should make all parties fully aware of all cost, risk, and science trade-offs. (Chapter 5) 
 
Recommendation: NASA should continue anticipating that missions are likely to be 
extended and identify funding for extended missions in the longer-term budget projections. 
(Chapter 5) 
 
Recommendation: Given the demonstrated science return from extended missions, NASA 
should continue to recognize their scientific importance and, subject to assessments and 
recommendations from the Senior Reviews, ensure that after the first two Senior Reviews, 
both operations and science for high-performing missions are funded at roughly constant 
levels, including adjustments for inflation. (Chapter 5) 

CONCLUSION 

NASA’s extended science missions provide excellent science return and, in some instances, also 
meet national interests and needs. Missions that have already been paid for and successfully launched can 
continue to provide very high return at modest incremental cost. Although the committee has 
recommended a number of refinements, including a 3-year cadence for Senior Reviews, there is a strong 
consensus that NASA’s approach to extended missions is fundamentally sound and merits continued 
support. 
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The Voyagers are not alone in functioning long after their planned prime mission. Many NASA 
science spacecraft—including but not limited to the Chandra X-Ray Observatory and the Kepler 
telescope; the Opportunity rover, the Lunar Reconnaissance Orbiter, and Cassini; the Aura, Aqua, and 
Terra Earth sciences spacecraft; the ACE and Wind spacecraft in interplanetary space between Sun and 
Earth, the THEMIS magnetospheric orbiter, and the SOHO and STEREO solar observatories—have 
provided incredible scientific value long after their primary missions.  

These lengthy missions and their incredible scientific productivity are not simply due to 
happenstance or the unexpected longevity of some spacecraft: Extended missions are a mainstay of 
NASA’s scientific endeavor, a major part of the agency’s science portfolio, and the result not only of 
impressive engineering, but also of careful management and effective planning. 

NASA’s Science Mission Directorate (SMD) operates several dozen spacecraft in Earth orbit and 
beyond. When these spacecraft were first launched, they entered what is known as the prime phase of 
their mission. During the prime phase, the spacecraft measurements are focused on achieving a specific 
set of mission objectives aimed at answering high-priority science questions. The objectives usually 
require measurements over one to several years and may be tied to the characteristics of the science 
target. For instance, 1 year at Mars lasts approximately 2 Earth years, so many Mars missions have prime 
phases lasting 2 Earth years. Spacecraft are designed to last through the proposed prime mission with a 
high level of certainty. They are tested to prescribed limits and include margins that ensure that a 
spacecraft has a high probability of achieving its design lifetime. These margins allow—but do not 
guarantee—the ability to use the spacecraft for well beyond the design lifetime. 

After a mission has completed its prime phase, it can be considered for an extension, provided it 
is still operational and can make important scientific contributions. The decision to extend a mission is 
made via a deliberative process within SMD. Mission teams prepare a scientific and technical proposal 
that also contains relevant budgetary information. The proposals are reviewed by a peer advisory panel 
selected by the director (or their designee) of SMD’s division for Astrophysics, Heliophysics, Earth 
Science, or Planetary Science (depending on which division supports the mission). A subsequent review 
by the division director takes into account various administrative considerations. A statute requires that 
such reviews (called Senior Reviews) take place every 2 years; however, there is no statutory definition of 
how such reviews must be conducted. Therefore, responsibility for defining and conducting each 
division’s Senior Review resides with the division of SMD in which it is held.  

THE SCIENCE MISSION DIRECTORATE 

SMD is tasked with helping to fulfill the goals of the national science agenda, as directed by the 
executive branch and Congress and advised by the nation’s scientific community. In doing so, SMD 
conducts scientific exploration missions that use spacecraft instruments to provide observations of Earth 
and other celestial bodies and phenomena.  

SMD is allocated slightly less than one third of NASA’s overall budget. In recent years SMD’s 
budget has been as follows: 

 
 2015 actual: $5.2 billion out of $18.0 billion total; 
 2016 enacted: $5.6 billion out of $19.3 billion total. 
 
NASA currently has approximately 60 active space science missions with more than 20 

additional missions currently under development—and missions can consist of multiple spacecraft. These 
spacecraft are sponsored by the Astrophysics, Heliophysics, Earth Science, and Planetary Science 
Divisions. Table 1.1 provides budget details for each of the four SMD divisions, along with data for the 
James Webb Space Telescope (JWST), which is separated from the Astrophysics Division for budgetary, 
management, and development purposes. Nonetheless, the science of JWST is largely astrophysical in 
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nature, and it is treated as an Astrophysics Division mission in the remainder of this report. Table 1.2 
shows the currently active extended missions in each division. 

 
TABLE 1.1  NASA Science Mission Directorate (SMD) Division Budgets (in $ million) 

 2015 Actual 2016 Enacted 

NASA Total 18,010.2 19,285.0 

SMD 5,243.0 5,589.4 

Earth Science 1,784.1 1,921.0 

Planetary Science 1,446.7 1,631.0 

Astrophysics 730.7 730.6 

James Webb Space Telescope 645.4 620.0 

Heliophysics 636.1 649.8 
 

 
TABLE 1.2  The 45 NASA Missions in Extended Phase as of February 2016  

Heliophysics Earth Science Planetary Science Astrophysics 

ACE Aqua Cassini Chandra 

AIM Aura LRO Fermi 

Geotail CALIPSO Mars Express Hubble 

Hinode CloudSat Mars Odyssey Kepler 

IBEX EO-1 MAVEN NuSTAR 

IRIS GRACE (1/2) MER Opportunity Spitzer 

RHESSI LAGEOS (1/2) MRO Swift 

SDO Landsat 7 MSL Curiosity XMM-Newton 

SOHO OSTM/Jason-2 NEOWISE  

STEREO (1/2) QuikSCAT   

THEMIS (1/5) SORCE   

TIMED Suomi NPP   

TWINS (A&B; 1/2) Terra   

Voyager     

Wind    

NOTE: Numbers in parentheses indicate remaining spacecraft operating, compared to the original number. 
Acronyms are defined in Appendix F. 

 
The Astrophysics Division focuses on understanding the universe beyond the solar system, 

seeking to catalog and understand astronomical phenomena such as black holes and exoplanets. Some 
missions are designed to observe the effects of dark matter, others to probe dark energy and to explore the 
origins of the cosmos. There are currently 10 active missions in the Astrophysics Division. 

Heliophysics is the study of the Sun, the solar wind, and the physical domain dominated by solar 
activity, the heliosphere. The goals of the Heliophysics Division range from understanding the active 
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processes within the interior of the Sun that drive the system, to measuring the space environments of 
Earth and other bodies within the solar system, stretching out to interstellar space. The Heliophysics 
Division is currently responsible for 16 active missions. 

Earth science comprises the study of the diverse components that make up Earth as a planetary 
system, including the oceans, atmosphere, continents, ice sheets, and biosphere. Using observations on a 
global scale, the Earth Science Division (ESD) seeks to improve national capabilities to understand and 
predict climate, weather, and natural hazards; manage natural resources; and collect the knowledge 
needed to develop environmental policy. There are currently 17 active missions in this division. 

The Planetary Science Division is responsible for sending robotic spacecraft and landers to 
Earth’s Moon, to the other planets and their moons, and to smaller celestial bodies, including asteroids 
and comets. These exploration activities are undertaken in order to better understand the origin and nature 
of the solar system and to provide a path forward for future human exploration. There are, at present, 13 
active Planetary Science Division missions. 

WHAT IS AN EXTENDED MISSION? 

NASA missions progress through multiple phases (A-F), from early concept studies to end of life 
(Figure 1.2). Phase E is the operational phase of a mission. This can include transit to the science-
gathering location (such as a Lagrange point for an astrophysical observatory, or a planet) and the 
science-gathering phase.  

All missions have a prime phase during which they collect data and answer their top-level science 
questions. Spacecraft are designed and tested to specified lifetimes. Nevertheless, just as home appliances 
like dishwashers rarely stop working the day after the warranty expires, NASA spacecraft typically 
continue working after completing their prime phase. (This issue is further described in Chapter 4.) As a 
mission nears the end of its prime phase, the project team can request a mission extension through the 
relevant division’s Senior Review process. Extended operation may be approved if a mission can collect 
data that will help to answer new science questions that were not anticipated when the mission was first 
formulated, or extend the existing data sets and improve understanding of the subjects being investigated. 
Table 1.2 lists SMD’s current missions in extended operations. 
 

 

 
FIGURE 1.2  Phases of a NASA science mission. 
 

 
The Senior Review process begins when SMD division issues a call for proposals, including 

guidelines for proposal content, several months before the desired due date. Proposing teams respond with 
written proposals that explain the accomplishments of the mission to date, the proposed observations that 
would be conducted during the mission extension and their scientific value, and the cost to support the 
observations for the period of time under consideration (typically the 2-year period until the next Senior 
Review). After submission and initial review of the written proposals, the Senior Review panel invites the 
proposal teams to give an oral presentation to the panel and answer questions about the proposed 
extended-mission activities. After a period that is usually on the order of a few weeks, the panel delivers 
to the relevant SMD division director a written report that contains the panel’s assessment of the merit of 
each mission proposal under consideration in that division that year. Taking into consideration the panel’s 
recommendation, as well as any programmatic or other factors, the director then decides which missions 
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to continue, end, or reduce in scope. Additional details describing how the Senior Reviews vary between 
divisions are described in Chapter 3. 

Most of these missions entered their extended mission phase after being recommended to do so 
by a Senior Review panel conducted within their division. There have been some exceptions. For 
instance, the NEOWISE mission, which is currently conducting a survey for near-Earth objects that could 
potentially impact Earth, was strategically directed to continue operations to satisfy agency requirements. 
It is not subject to the Senior Review process. 

NASA’s Associate Administrator for Space Science John Grunsfeld1 regularly encounters what 
he referred to as “urban myths of extended missions.” These include the following: SMD spends most of 
its budget on extended missions for limited science return; NASA cannot build new missions because of 
the cost of extended missions; and NASA never terminates any missions. Dr. Grunsfeld stated that all of 
these claims are inaccurate and provided the committee with data that refuted them.  

The first urban myth relates to the scientific productivity of extended missions. Dr. Grunsfeld 
explained to the committee that despite spending only a modest percentage of the SMD budget on 
missions in extended phase, the scientific return from those missions has been substantial. Chapter 2 of 
this report is devoted to identifying a number of major scientific discoveries made by missions in their 
extended phase, indicating that extended phase missions make major scientific contributions. 

WHAT DO NASA’S EXTENDED MISSIONS COST? 

In addition to Dr. Grunsfeld’s presentation, the committee heard from the four science division 
directors who presented further budget information about their directorates. They indicated that the 
amounts they spend on mission extensions vary. For example, in 2015 Earth Science Division (ESD) 
spent approximately 7 percent of its budget on extended missions and approximately 9 percent for 2016. 
The Astrophysics Division (ASD) spent approximately 17 percent of its budget in 2015 on extended 
missions, and 15.4 percent in 2016. In the Heliophysics Division (HD), 13 percent of the 2015 budget 
went to extended missions, and 12 percent in 2016 . The Planetary Science division (PSD) spent 15 
percent of its budget on extended missions in 2015, and 13 percent in 2016. Budget charts for fiscal year 
(FY) 2016 for all four NASA divisions are included in Appendix C. 

NASA provided rather detailed information, year-by-year for FY2011-FY2015, showing the 
budget for each extended mission, the total for extended missions, and the total for all of SMD. Over the 
5-year period, the total budget for extended missions ranged from $544 million to $591 million with the 
average over the 5 years at $567 million. The average budget for SMD over the same 5-year period was 
$5.03 billion. Thus, the extended missions accounted for 11.3 percent of the SMD funding from 2011 to 
2015. 

These numbers are the total listed under extended missions. However, there are additional funds 
expended on science from extended missions. In some cases, scientific research is supported through the 
mission line, but additional research may be supported under various research and analysis (R&A) or 
similar accounts in the four SMD divisions.  

The split of research supported by mission lines and by R&A accounts varies from division to 
division and from year to year. Moreover, accounting is complicated by the fact that research may use 
data from the prime mission phase, from the extended phase, or from a mix of the two. Some of this 
research would be supported under R&A even if the relevant extended mission were to end, whereas 
some of it is tied to new observations acquired as an extended mission continues. 

The committee heard that extended science mission budgets have fluctuated over time and will 
continue to do so based on many factors, including spacecraft health, the results of the Senior Reviews 
undertaken by the divisions, and other agency considerations. However, as discussed above, the overall 
SMD expenditure on extended science missions has averaged around 12 percent, which is significantly 

                                                      
1 Dr. John Grunsfeld was NASA’s Associate Administrator for Space Science through April 2016.   
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less than what is spent on missions in development, typically on the order of 50 percent (as calculated by 
combining the overall SMD development budget numbers for FY2016, which are shown graphically by 
division in Appendix C). The relatively small fraction spent on extended-phase missions compared to 
missions under development indicates that even if NASA were to end all extended missions in a division, 
the amount of funding this would free up for new missions would be of modest impact. The committee 
further addresses this issue in Chapter 4. 

Another of the urban myths relates to the perception that SMD does not terminate missions that 
have outlived their utility. Then-Associate Administrator Grunsfeld explained to the committee that SMD 
has ended numerous space missions over the past two decades (see Table 1.3). In some cases, missions 
were terminated when the spacecraft could no longer be operated (e.g., the Spirit rover and the GRAIL 
lunar spacecraft), but the agency has also ended its support for some missions after finding that their 
science productivity no longer warranted support. 

 
TABLE 1.3  NASA Science Missions Ended During Previous Two Decades 

Mission  

IUE Terminated 1996 

ISEE-3/ICE Ended 1997; recently rebooted by non-NASA group 

Compton Gamma 
Ray Observatory 

De-orbited June 2000, to avoid potential uncontrolled re-entry 

EUVE Decommissioned January 2001 

SAMPEX NASA funding ended June 2004, operated by Bowie State University thereafter 
until 2012 at no cost to NASA 

CHIPS NASA funding ended 2005; UCB operated until 2008 

FAST NASA funding ended 2005 

ERBS Terminated October 2005 

Polar Ended in 2007 

Gravity Probe B Funding ended 2008 

TRACE Terminated June 2010 after success of SDO 

WMAP Ended October 2010 after four extensions 

GALEX Terminated February 2011 

WISE Terminated in Astrophysics February 2011, restarted in Planetary Science in August 
2013 for near-Earth object searching 

RXTE Terminated January 2012 

QuikSCAT Planned to be decommissioning in 2015, but continued following RapidScat issues 

 

HOW DOES NASA DECIDE WHAT MISSIONS TO EXTEND? 

A key aspect of the process for extending NASA science missions is the Senior Review. The 
requirement for this review is established in legislation as follows: 
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The Administrator shall carry out biennial reviews within each of the science divisions to assess the cost 
and benefits of extending the date of the termination of data collection for those missions that have 
exceeded their planned mission lifetime.”2 
 
The requirement was initially established in the 2005 NASA Authorization Act and repeated in 

the 2010 NASA Authorization Act. NASA ASD’ began conducting Senior Reviews of its missions in the 
early 1990s and established a 2-year cadence for such reviews. According to former congressional staffers 
who spoke to the committee, the Authorization Act language calling for biennial reviews was based in 
part on this previously established cadence and was in part somewhat of a guess, with one former staffer 
suggesting that in Washington, D.C., “two is the average between one and infinity.” 

NASA’s overall policies for extending science missions are outlined in the agency’s management 
plan. The 2013 Science Mission Directorate Management Handbook states that after a mission’s prime 
phase, entry into an extended phase “is possible if part of a compelling investigation that contributes to 
NASA’s goals” (NASA, 2013). This document also defines SMD’s implementation for the Senior 
Review process, which is codified, yet flexible for the needs of each division, and involves an evaluation 
of the productivity of the proposed extended mission by members of the scientific community.  

NASA conducts Senior Reviews for astrophysics and planetary science missions in even-
numbered years and for Earth science and heliophysics missions in odd-numbered years. The Senior 
Review processes for the four divisions are discussed in detail in Chapter 3. 

The following chapters in this report review in greater detail the scientific return secured from 
extended missions. The process that is in place to ensure that extended missions are productive 
contributors to NASA’s science goals, how the relatively modest costs associated with supporting 
extended missions compares to the support required for new mission development and the potential for 
science lost if extended missions are not supported, and the potential ways in which extended missions 
may realize cost savings relative to their prime phase. 

REFERENCE 

 
NASA. 2013. Science Mission Directorate (SMD) Management Handbook. Washington, D.C., October. 

                                                      
2 National Aeronautics and Space Administration Authorization Act of 2005, P.L. 109-155, Section 304, 

“Assessment of Science Mission Extensions,” December 30, 2005. 
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The Scientific Benefits of Mission Extensions 
 
 

Many NASA missions over previous decades have operated into extended phases and produced 
significant scientific discoveries. Scientific research is often conducted using extensive data sets collected 
in both prime and extended mission phases. In the Earth science, heliophysics, and planetary science 
fields, it is often important to collect data over long periods of time to detect long-term trends, thus, a 
discovery may be made long into extended phase that was only possible after the collection of a lengthy 
data set. There are also completely new discoveries, either from rare events, new observations of specific 
features, or new mission destinations or observing modes. Major results have been realized while 
missions were in extended phase. 

This chapter highlights some of the discoveries made in extended mission phase, but certainly is 
not comprehensive. What this short overview demonstrates, however, is that all of the science disciplines 
in NASA’s Science Mission Directorate (SMD) have experienced major benefits from the extended phase 
operations of spaceflight missions. This leads to the first major finding of this report. 

 
Finding: NASA’s extended science missions have made major contributions to scientific 
discovery over many decades. 

ASTROPHYSICS DISCOVERIES DURING EXTENDED MISSIONS 

The Astrophysics Science Division conducts a broad program of research in astronomy, 
astrophysics, and fundamental physics. Investigations address issues such as the nature of dark matter and 
dark energy, discovery of exoplanets and analysis of which planets could harbor life, and the nature of 
space, time, and matter at the edges of black holes. There were four “Great Observatories” consisting of 
the Hubble Space Telescope (HST), Compton Gamma-Ray Observatory, the Chandra X-Ray 
Observatory, and the Spitzer Space Telescope. Except for Compton (de-orbited in 1999), all of these are 
in extended mission phases (see also Box 2.1 for a discussion of HST). Examples of results from current 
extended mission are in Table 2.1. 

The Chandra X-ray Observatory, which provides 10 times better spatial resolution (0.5 arcsec) 
than any other X-ray observatory to date or currently in development, was launched into a highly 
elliptical, geocentric orbit in 1999 and completed its prime mission in 2004. Since that time, it has been 
extended through the biennial Senior Review process and continues to be in good health. During its 
extended mission, Chandra has contributed important results over diverse areas of astrophysics, ranging 
from our solar system to cosmological studies. Chandra has provided strong support for the existence of 
dark matter (Clowe et al., 2006), and it has recorded the long-term behavior of supermassive black holes, 
including Sagittarius A* at the center of the Milky Way (Ponti et al., 2015) (Figure 2.1). 
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BOX 2.1 
The Hubble Space Telescope Prime and Extended Missions 

 
Although the Hubble Space Telescope (HST) has been in orbit for more than 26 years, it has spent very 

little time in extended-mission phase due to repeated servicing and upgrading. Hubble was launched on April 24, 
1990, as payload on the space shuttle Discovery. Hubble was designed with eight instrument bays. The original 
instruments included three fine guidance sensors  used for pointing, the Wide Field Planetary Camera (WFPC) 1, the 
Faint Object Spectrograph (FOS), the Goddard High Resolution Spectrograph (GHRS), the Faint Object Camera 
(FOC), and the High Speed Photometer (HSP). Since the earliest plans, HST was designed to be serviceable via the 
space shuttle. In order to keep the observatory at the forefront of scientific ability, new instruments replaced the 
originals, and broken or outdated hardware was replaced over the course of five servicing missions from 1993 to 
2009. 

The first servicing mission (SM1) launched on December 2, 1993, and was focused primarily on repairing 
Hubble’s optical system. To correct this problem, WFPC2 was designed with internal corrective optics and replaced 
WFPC1. Similarly, the Corrective Optics Space Telescope Axial Replacement (COSTAR) replaced HSP to serve as 
corrective optics for the FOS, GHRS, and FOC. Malfunctioning solar arrays were also replaced. With these new 
instruments installed, Hubble started a new prime mission phase. 

On the second servicing mission (SM2) launched on February 11, 1997, the Space Telescope Imaging 
Spectrograph (STIS) replaced GHRS, and the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) 
replaced FOS. Both of these instruments contained internal corrective optics and therefore would not need to rely on 
COSTAR. During this mission, astronauts also replaced one FGS, installed a Solid State Recorder (SSR) in place of 
one of the original data recorders, and replaced one of the reaction wheel assemblies used for pointing. Hubble again 
started a prime mission phase.  

The third (SM3A) and fourth (SM3B) servicing missions were originally supposed to be completed 
together, but when a third of Hubble’s six gyroscopes broke down, NASA decided to split the mission into two 
parts. The telescope needs at least three gyroscopes for accurate pointing, so the first half of the servicing mission 
was moved up to a December 19, 1999, launch. This turned out to be excellent timing, as a fourth gyroscope broke 
down that November, necessitating that Hubble be put into a “safe mode” to protect it until it could be serviced. 
During SM3A, astronauts replaced all six gyroscopes, one FGS, and a broken radio transmitter, and installed a new 
central computer and a more advanced SSR.  

During SM3B, launched March 1, 2002, the Advanced Camera for Surveys (ACS) replaced FOS, the last 
of the original instruments. Additionally, NICMOS was repaired during this mission, because its cooling system had 
exhausted its supply of nitrogen ice. Hubble’s solar panels and another reaction wheel assembly were also replaced.  

The fifth and final servicing mission (SM4) almost did not happen, because its initially planned 2004 
launch was canceled in the aftermath of the 2003 Columbia space shuttle accident. After the mission was reinstated 
with an eventual May 2009 launch, NASA planned with an eye for the future. Two major instruments were replaced, 
with the Wide Field Camera (WFC) 3 replacing WFPC2 and the Cosmic Origins Spectrographs (COS) replacing the 
no longer needed COSTAR. In addition, repairs were made to STIS and ACS, which had gone offline in 2004 and 
2007, respectively. To ensure the longevity of the telescope, astronauts replaced all six gyroscopes, all six of the 
original batteries, and another FGS, in addition to covering equipment bays with new insulating blankets. They also 
installed a backup Science Instrument Command and Data Handling Unit, because the original had malfunctioned 
and its backup had been activated. Planning for Hubble’s eventual decommission, they also installed the Soft 
Capture Mechanism, allowing for a robotic mission to safely bring the telescope back through Earth’s atmosphere.  

Due to its unique serviceable design, Hubble entered a new phase of its prime mission after each servicing 
mission. In this way, the servicing missions “reset the clock,” as updated technology and hardware repairs extended 
Hubble’s lifetime as well as the time is spent in its prime phase. The final prime mission phase, post-SM4, began 
with the 2009 servicing mission and ended in 2014, when Hubble entered its extended-mission phase. With the 
retirement of the Space Shuttle Program in 2011, Hubble can no longer be serviced, but due to the efforts of SM4, 
NASA is hoping to keep it operational until at least 2020 to allow for at least 1 year of overlap with James Webb 
Space Telescope.  
 

END BOX 2.1 
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The Spitzer Space Telescope was launched into an Earth-trailing heliocentric orbit in 2003. Upon 
completion of its prime mission in 2009, when its reserve of liquid helium cryogen was exhausted, 
Spitzer entered into the “warm” Spitzer extended mission phase. Although only two of its four original 
imaging arrays have remained useful (at wavelengths of 3.6 and 4.5 µm), Spitzer has successfully 
provided important observations of comets, near-Earth asteroids, brown dwarfs, transient objects, galaxy 
clusters, and the most distant galaxies (Werner et al., 2015).  

One of the most important questions in astrophysics involves the details of star formation and 
galaxy growth in the early universe. On the basis of colors determined from Hubble and Spitzer 
(warm/extended mission) images in different wavebands, a galaxy named GNz-11 had an estimated 
distance and age suggesting it was one of the most distant and youngest observed to date. These Spitzer 
and Hubble images indicated that GNz-11 is about 25 times smaller than our Milky Way galaxy and 
about 100 times less massive. Nonetheless, GNz-11 forms stars at a rate about 20 times higher than the 
present rate of star formation in the Milky Way. Motivated by these prior Hubble and Spitzer data, 
spectroscopic observations made in 2015 with the Hubble Wide Field Camera 3 (during the Hubble 
extended mission) determined a precise redshift of 11.1 for this galaxy, meaning that it is being observed 
as it appeared just 400 million years after the Big Bang and about 200 million years earlier than the 
previous record holder (Oesch et al., 2016). This more precise distance determination tells us that star 
formation proceeds much more rapidly than previously known in the very early universe and promises 
many more such results from the upcoming James Webb Space Telescope (JWST) and Wide-Field 
Infrared Survey Telescope (WFIRST) missions.  

Recent engineering modifications have enabled Spitzer to become an additional tool in the 
identification, confirmation, and classification of exoplanets. Moreover, Spitzer’s warm mission has 
become an essential tool for studying atmospheric properties of hot Jupiters and determining whether 
super-Earth size planets have an atmosphere (see Figure 2.2). Thus, one of the lessons from Spitzer’s 
experience is that extended missions can be surprisingly useful and resilient, even to the people who 
developed them. There was widespread perception within the astrophysics community that the warm 
Spitzer phase would not be very productive, and yet it has resulted in numerous important scientific 
discoveries. There are many reasons for this, including the fact that new technologies on the ground, and 
new concepts, questions, and ideas generated by its mission team, can be applied to a spacecraft many 
years after the end of its prime phase. 

The Swift Gamma-Ray Burst Mission studies the most powerful explosions the universe has seen 
since the Big Bang. In its extended phase, Swift discovered the first jetted emission from a tidal 
disruption event (TDE). TDEs are a unique probe of dormant supermassive black holes in galaxies that 
are too distant for resolved kinematic studies. They occur when a star passes too close to a supermassive 
black hole and is ripped apart by the tidal forces. In an unexpected development, the TDE world was 
revolutionized in 2011 by Swift’s discovery of the high-energy transient Sw J1644+57. While initially 
thought to be an exotic gamma-ray burst, SwJ1644+57 turned out to be the birth of a relativistic jet 
triggered by the tidal disruption process. It was located at the center of an inactive galaxy nucleus, where 
a supermassive black hole is likely to exist. The initial bright flaring emission lasted for 1 day, followed 
by 1 year of fading afterglow. The formation of a relativistic outflow also powered a bright radio 
emission, visible for months after the onset of SwJ1644+57. Based on this Swift discovery, the new class 
of relativistic TDEs are predicted to be one of the most numerous class of extragalactic transients to be 
discovered by forthcoming wide-field radio surveys. 
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TABLE 2.2  Examples of Science Results Made Possible by Extended Missions in Earth Science 

Mission Science Results 

Aqua MODIS fractional snow cover, sea ice extent, and ice surface temperature products showed 
that the melting of the Greenland ice sheet in 2012 was the most extensive surface melting 
observed in the satellite era to that date (Hall et al., 2013). 

Aura Microwave Limb Sounder and Ozone Monitoring Instrument data revealed unprecedented 
ozone loss during the 2010-2011 Arctic winter (Manney et al., 2011). 

CALIPSO 
 

CALIPSO observations showed gradually increasing stratospheric aerosol loading from 
2006-2011 due to a series of relatively moderate volcanic eruptions (Vernier et al., 2011) 
and resulting in a global cooling of about −0.07°C (Solomon et al., 2011), sufficient to offset 
a significant portion of the surface warming expected from increasing greenhouse gas 
concentrations over the past decade. 

CloudSat CloudSat data from 2008-2010 showed that trapping of heat by clouds is enhancing 
Greenland ice sheet meltwater runoff (Van Tricht et al., 2016). 

EO-1 
 

As a technology demonstration mission, EO-1 demonstrated over 12 years the practicality 
and stability of using ground-based calibration sites in support of sensor cross-comparisons 
and carbon flux measurements (Entcheva, 2013). 

GRACE 
 

GRACE documented dramatic ice mass loss in Patagonia (Ivins et al., 2011), the Russian 
High Arctic (Moholdt et al., 2012), coastal Alaska (Sasgen et al., 2012), the Canadian Arctic 
(Gardner et al., 2011), and in the high mountains of central Asia (Jacob et al., 2012). 

GRACE data revealed groundwater depletion in the Colorado River basin from 2002-
2014 during the recent drought in the western United States (Castle et al., 2014), as well as 
groundwater depletion in China (Feng et al., 2013; Moiwo et al., 2013), the Middle East 
(Joodaki et al., 2014), Turkey (Gokmen et al., 2013), the Aral Sea watershed (Zmijewski 
and Becker, 2014), Mexico (Castellazzi et al., 2014), and India (Chen et al., 2014; 
Chinnasamy et al., 2013). 

Jason-1/Jason-2 
(OSTM) 

The Jason-1/Jason-2 (OSTM) observation record now stretches over 20 years, providing the 
most accurate and complete understanding of sea level change. The extended mission phases 
of Jason-1 and Jason-2 improved estimates of deep ocean topography, resolving many 
presently unknown seamounts and geologic features on the ocean bottom. 

QuikSCAT 
 

From 1999-2009, QuikSCAT provided ocean vector winds used by operational weather 
centers and the U.S. Navy. Since 2009, QuikSCAT provided a stable calibration of other 
spaceborne ocean wind vector measurements to enable a long-term, high-quality ocean wind 
vector database. 

SORCE 
 

SORCE observations have extended the record of solar irradiance to determine that warming 
over the past century is attributable mainly to increasing anthropogenic gases, with solar 
irradiance variability estimated to cause about 10 percent of the 0.74°C per century increase 
in global surface temperature (Lean and Rind, 2008). Furthermore, SORCE total solar 
irradiance data from the Total Irradiance Monitor instrument revealed a smaller solar 
irradiance than previously thought (Kopp and Lean, 2011). 

Terra MOPITT data between 2000-2003 and 2004-2008 show a clear decrease in carbon 
monoxide concentration worldwide (Worden et al., 2013) and over megacities (Pommier et 
al., 2013). MISR data show that human-caused fires limit rainfall in Africa, exacerbating dry 
conditions in the region (Tosca et al., 2015). 

NOTE: CALIPSO, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation; EO-1, Earth Observing-One 
Mission; GRACE, Gravity Recovery and Climate Experiment; MISR, Multi-angle Imaging Spectroradiometer; 
MODIS, Moderate Resolution Imaging Spectroradiometer; MOPITT, Measurement of Pollution in the Troposphere; 
OSTM, Ocean Surface Topography Mission; QuikSCAT, Quick Scatterometer; SORCE, Solar Radiation and 
Climate Experiment. 
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HELIOPHYSICS DISCOVERIES DURING EXTENDED MISSIONS 

Heliophysics is the study of the Sun, the heliosphere, and the interactions of the Sun and the solar 
wind with planetary environments. The heliosphere is a vast region of space carved out of the local 
interstellar medium by the solar wind, the magnetized plasma that flows outward at high speeds from its 
source in the solar corona. Heliophysics addresses fundamental properties of space plasmas. Using in situ 
spacecraft measurements of charged particles from low to high energies, the magnetic field, 
electromagnetic radiation, and energetic neutral atoms produced by charge exchange with energetic ions 
in regions remote from the observation point, studies in this area elucidate processes that apply to 
astrophysical systems throughout the universe. Research addresses the properties and the variability of the 
Sun and the solar wind, the interaction of the solar wind with planetary environments, and the outer 
heliosphere and its interaction with the interstellar medium, the latter a new frontier in the field. The 
interaction of the solar wind with planetary environments produces magnetospheres or analogous 
structures, and study of Earth’s magnetosphere has profoundly contributed to our understanding of the 
complexities of magnetized plasmas. 

The solar wind is confined within the heliosphere, a plasma bubble within the local interstellar 
medium, and the study of the outer heliosphere is a new frontier in the field. Heliophysics applies lessons 
of basic physics to the analysis and prediction of space weather, which is increasingly important to our 
technological civilization. Key objectives of heliophysics include unraveling of fundamental phenomena 
such as particle acceleration in turbulent plasmas magnetic reconnection in space plasmas, a goal that 
requires multi-spacecraft measurements on scales pertinent to exposing the details of this ubiquitous and 
critically important process. The science conducted by extended missions has been essential to advancing 
knowledge in all of the principal areas comprising heliophysics. Examples of major scientific results from 
a subsample are provided in Table 2.3 and the text that follows. 

One outstanding example of discovery science emerging from data acquired during the extended 
phase of a mission is the first in situ exploration of the outer heliosphere. The evidence comes from the 
two Voyager spacecraft, initially approved for flybys of Jupiter and Saturn. Voyager 1 and 2 are perhaps 
the most remarkable spacecraft ever launched. (Voyager 1 flew by Jupiter in 1979 and Saturn in 1980. 
Voyager 2 flew by Jupiter in 1979, Saturn in 1981, Uranus in 1986, and Neptune in 1989.) Once past 
Neptune, the ongoing extended Voyager mission has provided unprecedented information about the outer 
boundaries of the region of interstellar space in which we live. The scientific benefits of the extended 
mission include the first observation of the termination shock (Stone et al., 2005), a front across which the 
solar wind slows markedly, and the first crossing of the outer boundary of the heliosphere and the first 
direct encounter with interstellar space (Stone et al., 2013; Krimigis et al., 2015) (see Figure 2.6). The 
dramatic results obtained at the outer boundary of the solar system are particularly remarkable in view of 
the small cost of extended operation. Even today, the in situ measurements of plasma and magnetic field 
properties made by the two Voyager spacecraft and the remote sensing of the plasma and field properties 
by the Interstellar Boundary Explorer (IBEX) spacecraft in Earth orbit continue to provide information 
about the farthest reaches of the heliosphere; the new data challenge our scientific preconceptions and are 
generating new understanding. 
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TABLE 2.3  Examples of Science Results Made Possible by Extended Missions in Heliophysics 

Mission Science Results 

ACE Continuous observation of solar wind conditions for studies of energy, mass, and 
momentum flow through the geospace system (Gopalswamy, 2005). Long-term 
(over multiple solar cycles) observation of the solar wind is an essential part of the 
Heliophysics System Observatory (King and Papitashvili, 2005). 

AIM Long-distance relationships (“teleconnections”) were discovered between 
noctilucent clouds in one polar region and meteorological activity in the other (Holt 
et al., 2015). 

ISEE-3 Launched in 1978, ISEE became ICE in 1982, and well into extended phase, it was 
retargeted to Comet Giacobini-Zinner, becoming the first spacecraft to traverse the 
plasma tail of a comet, where it measured particles, fields, and waves (Scarf et al., 
1986). 

STEREO In its extended mission, STEREO obtained the first 360 degree images of the Sun.a  

THEMIS/ARTEMIS 
 

Conversion of magnetic energy in the magnetotail to particle energy in the inner 
magnetosphere was observed (Angelopoulos et al., 2013), particularly in 
conjunction with the Van Allen Probes (THEMIS). Retargeting two of the five 
spacecraft to circumlunar orbits (ARTEMIS) allowed for the first fully quantitative 
analysis of the structure and dynamical processes characteristic of the lunar wake 
(Wiehle et al., 2011). 

TIMED Dramatic cooling in the upper atmosphere was observed that correlated with the 
deep solar minimum in 2009 (Solomon et al., 2010).  

Voyager 1 and 2, 
IBEX,  
Cassini 

In situ measurements by Voyagers 1 and 2 of magnetized plasmas and energetic 
particles in the outermost regions of the heliosphere, combined with remote sensing 
energetic neutral atoms observations by IBEX and Cassini have led to development 
of new models of the heliosphere required to explain plasma properties of these 
strange plasma regions. 

Wind Direct observation of the electron diffusion region in collisionless reconnection 
(Øieroset et al., 2001).  

HSO  HSO is not a single mission. It brings together the sum of spacecraft in both prime 
and extended phase. In particular, through the use of extended phase missions 
(including those not in this table), HSO has been able to document changes in the 
geospace environment over several solar cycles, especially the anomalously deep 
2009 solar minimum (Russell et al., 2010), allowing for heliospheric wide 
observational studies (Gibson et al., 2009) and comparisons to models (Wiltberger 
et al., 2012) of entire Carrington rotations of the Sun.  

a NASA Science, “First Ever STEREO Images of the Entire Sun,” release date February 6, 2011, 
http://science.nasa.gov/science-news/science-at-nasa/2011/06feb_fullsun/. 
NOTE: ACE, Advanced Composition Explorer; AIM, Aeronomy of Ice in the Mesosphere; ARTEMIS, 
Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon’s Interaction with the Sun; HSO, 
Heliophysics System Observatory; ICE, International Cometary Explorer; ISEE, International Earth-Sun Explorer; 
STEREO, Solar Terrestrial Relations Observatory; THEMIS, Time History of Events and Macroscale Interactions 
during Substorms; TIMED, Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics. 

 



Copyright © National Academy of Sciences. All rights reserved.

Extending Science—NASA's Space Science Mission Extensions and the Senior Review Process 

 

PRE

FIGURE
first time.
http://ww
NASA/W
 

Fr
backyard,
extended 
reconnect
fields to p
process ar
processes 
because sp
small. But
right time
Data from
extended 
which ene
and helps 

T
space wea
fundamen
Sun. In 20
sunspot ac
Explorer) 
wind. The

EPUBLICAT

 2.6  The Voy
 SOURCE: N
w.nasa.gov/v

Walt Feimer. 

rom the large
, important sc
missions. A k

tion. This dyn
plasmas and p
re still poorly
were at the h

pace is big, an
t in 2001, NA

e to capture cr
m the ongoing

mission have
ergy released 
create the Va

Tracking energ
ather. We live
ntal to underst
009, Earth exp
ctivity (e.g., R
extended mis

e deep solar m

TION DRAF

yager interste
NASA, “What
vision/univers

e scale and the
cientific disco
key example i
namical pheno
powers solar f
y understood. 
heart of recon
nd the electro

ASA’s Wind s
rucial evidenc
g THEMIS (T
e been illumin

in magnetic r
an Allen radia
gy flows throu
e in the neighb
tanding our sp
perienced the
Russell et al., 
ssions were o

minimum was

T—SUBJEC

ellar mission i
t's It Like Wh
e/solarsystem

e outer reache
overies have b
is the develop
omenon, ubiq
flares and mag
There had be
nection in Ea

on diffusion re
spacecraft, we
ce that collisio
ime History o

nating in cons
reconnection 
ation belts (A
ugh the magn
borhood of a 
pace climate. 

e deepest prol
2010). Fortu

operating and 
s felt througho

CT TO FURT
26 

is exploring th
here Voyager 
m/voyager-inte

es of the solar
been made and
ping understan
quitous in spac
gnetic storms
en an ongoin

arth’s magneto
egion where t
ell into its ext
onless reconn
of Events and
iderable detai
is converted 

Angelopoulos 
netospheric sy
variable star,
In the past de
onged solar m

unately, the W
were able to 

out the system

THER EDIT

he terminatio
Is?,” release 
erstellar-term

r system to th
d are continu
nding of the p
ce plasmas, tr

s. However, m
ng argument w
osphere. The 
the critical pr
tended missio
nection was o
d Macroscale 
il the fundam
into plasma e
et al., 2013).

ystem is centr
, and understa
ecade, someth
minimum of t

Wind and ACE
monitor the s

m; for exampl

TORIAL COR

on shock and h
date May 24,

ms.html; court

he smallest sc
uing to be mad
process of ma
ransfers energ

many details o
whether resist

question was
rocesses take 
on, was in the
ccurring (Øie
Interactions d

mental mechan
energy that po

ral to our und
anding its var
hing has been
the space age 
E (Advanced C
state of the Su
le, data from t

RRECTION

heliopause fo
, 2005, 
tesy of 

ale in our ow
de using data 
agnetic 
gy from magn
of the reconne
tive or collisio
s hard to answ
place is very 

e right place a
eroset et al., 2
during Substo
nisms through
owers the auro

derstanding of
riations is 
n happening a
with almost n
Composition 
un and the sol
the TIMED 

N 

 
or the 

wn 
from 

netic 
ection 
onless 
wer 

at the 
2001). 
orms) 
h 
ora 

f 

at the 
no 

lar 



Copyright © National Academy of Sciences. All rights reserved.

Extending Science—NASA's Space Science Mission Extensions and the Senior Review Process 

 

PRE

(Thermos
between t
(Solomon
spacecraft
of Earth’s

A
will the Su
magnetic 
the 17th c
continuou
Fortunate
functionin
simultane
functionin
temporal c

 

FIGURE
widesprea
SOURCE
http://ww
                

2 The D
English ch
is the name
exceedingl
(1851–192

EPUBLICAT

phere, Ionosp
the anomalous
n et al., 2010).
ft that compris
s space enviro

Additional que
un evolve ove
activity like t

century?2 Wha
us monitoring
ly, the armad
ng well. Given
eously as new 
ng effectively
changes of ke

 2.7  The Hel
ad coverage n

E: NASA, “He
w.nasa.gov/c
                     
Dalton minimu

hemist, physicis
e used for the p
ly rare, named 
28).  

TION DRAF

phere, Mesosp
sly low solar 
. This type of
se the Helioph
onment (see F
estions addres
er the next so
that of the Da
at will be the 

g of all of the 
da of spacecra
n that it woul
missions, it i

y because they
ey elements o

liophysics Sy
needed to und
eliophysics Sy
ontent/godda
                 

um was a perio
st, and meteoro
period starting 
after the solar 

T—SUBJEC

phere Energe
extreme ultra

f correlated re
hysics System

Figure 2.7).  
ssable through
olar cycle or tw
alton minimum
effect on spa
components o

aft that compr
ld never be po
is essential th
y are needed t
of the heliosph

stem Observa
derstand solar 
ystem Observ

ard/heliophysi

od of low sunsp
ologist John Da
in about 1645 
astronomers A

CT TO FURT
27 

tics and Dyna
aviolet irradia
esponse highli
m Observatory

h heliophysic
wo? Will it en
m of the 19th
ace weather, o
of the system 
ise the HSO a
ossible to laun

hat existing sp
to provide the
here. 

atory, domina
physics. NOT

vatory (HSO)
ics-system-ob

pot count, repre
alton, lasting fr
and continuing

Annie Russell M

THER EDIT

amics) extend
ance and the t
ights the need
y (HSO) to pr

cs observatori
nter into a ne

h century or ev
or even on ter

can help to a
are already op
nch all of the 

pacecraft be o
e required lon

ated by extend
TE: Acronym
,” last modifi

bservatory-hso

esenting low s
from about 179
g to about 171
Maunder (1868

TORIAL COR

ded mission r
thermospheric
d for the cons
rovide a long

ies include the
w extended m
ven the Maun
rrestrial clima
answer these q
perating and m
elements of t

operated as lon
ng-term record

ded missions,
ms are defined
ied March 2, 2
o/#.V3FY8vk

olar activity, n
90 to 1830. The
5 when sunspo

8–1947) and E.

RRECTION

evealed a link
c density 
stellation of 
g-term monito

e following: H
minimum in s
nder minimum
ate? Only a 
questions. 
most are still 
the HSO 
ng as they are
ds that can re

 
, provides the
d in Appendix
2015, 
krJki.  

named after the
e Maunder min
ots became 
. Walter Maun

N 

k 

oring 

How 
olar 

m of 

e 
eveal 

e 
x F. 

e 
nimum 

der 



Copyright © National Academy of Sciences. All rights reserved.

Extending Science—NASA's Space Science Mission Extensions and the Senior Review Process 

 

PREPUBLICATION DRAFT—SUBJECT TO FURTHER EDITORIAL CORRECTION 
28 

PLANETARY SCIENCE DISCOVERIES DURING EXTENDED MISSIONS 

The strategic goal of NASA’s Planetary Science Division (PSD) is to advance scientific 
knowledge of the origin and history of the solar system, the potential for life elsewhere, and the hazards 
and resources present as humans explore space. Planetary science differs from the other science 
disciplines in a key way: it commonly takes significant time and energy for a spacecraft to reach its 
operating location and begin collecting data. For planetary science missions, a number of major science 
results have been possible only because of extended missions (see Table 2.4 for examples from some 
current extended missions). This section focuses on three examples to demonstrate the value of extended 
missions: recent extended mission discoveries about Mars, about ocean worlds, and near-Earth objects. In 
the first two cases, these discoveries have been critically important to shaping future exploration to 
achieve the highest priorities of NASA PSD. In the latter case, a relatively recent discovery revealed that 
Earth may have previously unknown companions in its orbit.  

During the 2014 Planetary Science Senior Review, both the Lunar Reconnaissance Orbiter and 
the Opportunity rover were rated highly for their continued scientific contributions. However, they were 
both zeroed out for funding in the President’s fiscal year (FY) 2015 and FY2016 budgets. The scientific 
discoveries made by both missions during their extended phase are addressed in Appendix B of this 
report. 
 
TABLE 2.4  Examples of Major Science Results Made Possible by Extended Missions in Planetary 
Sciences 

Mission Science Results 

Cassini Global subsurface oceans were discovered in Titan (Lorenz et al., 2008; Iess et al., 
2012) and in Enceladus (Thomas et al., 2016). 

LRO Hundreds of new impact events (Speyerer et al., submitted) as well as recent or 
active tectonics (Watters et al., 2015) were detected, and polar ice was quantified 
(Hayne et al., 2015; Patterson et al., 2016).  

MERs 
Spirit and 
Opportunity 

A habitable hydrothermal environment was discovered by the Spirit rover (Squyres et 
al., 2008; Ruff et al., 2011). The Opportunity rover, along with MRO, mapped 
hydrated magnesium and calcium sulfate minerals that formed from rising ground 
waters (Arvidson et al., 2015). 

Mars Odyssey Extensive chloride-bearing deposits were discovered, likely ancient playas (Osterloo 
et al., 2008). 

MRO Recurring slope lineae were discovered (McEwen et al., 2011) and their association 
with hydrated salts was studied (Ojha et al., 2015). 

Mars Science 
Laboratory 

The Curiosity rover arrived at the base of Mt. Sharp and discovered evidence for a 
long-lived lake (Grotzinger et al., 2015). Evidence of refractory organic material on 
Mars was discovered (Eigenbrode et al., 2015). 

NEOWISE Earth’s Trojan asteroid was discovered (Connors et al., 2014). 

Voyager 2 The first exploration of ice giant systems was completed of Uranus (Stone, 1987) and 
Neptune and Triton (Stone and Miner, 1989). 

NOTE: LRO, Lunar Reconnaissance Orbiter; MER, Mars Exploration Rovers, MRO, Mars Reconnaissance Orbiter, 
NEOWISE, Near-Earth Object Wide-field Infrared Survey Explorer. 

 
NASA’s Mars Exploration Program has benefited from missions lasting well beyond their 

primary missions, including the Mars Global Surveyor (MGS), Mars Odyssey, Mars Reconnaissance 
Orbiter (MRO), and the Mars Exploration Rovers (MER) Spirit and Opportunity. Each of these missions 
has spent far more time in extended phases than in the prime missions. For example, Spirit did not arrive 
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 NASA extended mission science results have been sufficiently compelling to change the future 
exploration priorities of NASA and the decadal surveys. Examples include GRACE leading to GRACE-
Follow On, Mars discoveries leading to new landing sites and future orbiter science priorities, and 
discovery of subsurface oceans leading to new missions such as the Europa multiple flyby mission and a 
new Ocean Worlds program.  
 

Finding: NASA’s extended missions are an important part of both achieving science objectives 
of the decadal surveys (see Appendix D) and determining priorities or approaches for future 
exploration.  

 
Recommendation: NASA should strongly support a robust portfolio of extended-phase 
science missions. This support should include advance planning and sufficient funding to 
optimize the scientific return from continued operation of the missions. 
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3 
 

Review of Extended Missions by NASA 
 
 
NASA ensures that its fleet of extended science missions provides good value and remains in 

balance with other science-motivated pursuits by periodically reviewing operating missions. Extended 
missions generally provide excellent, cost-effective science value by leveraging existing assets. Although 
the resource levels required to operate extended missions are generally much lower than those required 
for developing comparable new prime missions, the required investment levels are substantial enough that 
careful stewardship is warranted. 

NASA reviews its extended missions biannually in accordance with Public Law 109-155 (passed 
in 2005 and renewed in 2010 as part of the NASA Authorization Act). Because that law does not 
prescribe implementation details, NASA has designed and implemented a review process in each of the 
Science Mission Directorate (SMD) divisions. The review process was described to the committee 
through presentations by the SMD associate administrator and each of the SMD division directors. The 
committee received further information in the form of archival documents and data. The overall approach 
to the reviews is based on peer-review principles commonly used to assess scientific merit. The reviews 
are called Senior Reviews, and each of the four SMD divisions conducts its own Senior Review using its 
own processes and criteria. Many aspects of the reviews are shared across the divisions, but each division 
implements processes and criteria tailored to its own characteristics and needs. The present-day Senior 
Reviews are derived from those that began in the 1990s within what are now called the Astrophysics 
Division and the Heliophysics Division. The Planetary Science Division also began conducting Senior 
Reviews in the 1990s, and the Earth Sciences Division has been conducting them since 2005. All SMD 
divisions therefore have extensive experience with conducting Senior Reviews. 

NASA uses the Senior Reviews as key guidance for managing extended missions. The reviews 
are the primary gauges of the scientific value of each mission, and the findings resulting from these 
reviews play a central role in NASA’s decision-making and resource allocation planning. Guidance from 
the Senior Reviews is used, along with other significant factors that are taken into account, for any NASA 
activity, including “the budget, programmatic considerations, agency or national policy, and international 
partnerships.”1 

 
Finding: The Senior Review is a valuable peer-review process for assessing the utility, scientific 
value, and interagency applications of spacecraft missions that continue to operate beyond their 
prime mission. 
 
This chapter describes NASA’s present implementation of Senior Reviews. It discusses elements 

that are common to the four SMD divisions and highlights aspects that differ among the divisions. It 
presents perspectives on the process gleaned from presentations by and conversations with a cross section 
of stakeholders. The chapter discusses evolution of the Senior Review process through incorporation of 
experiences from previous reviews, and the chapter presents a summary history of the missions that have 

                                                      
1 Clarke, S., NASA Science Mission Directorate. 2016. “Heliophysics Division,” presentation to the 

Academies’ Committee on NASA Science Mission Extensions, February 1, Washington DC. 
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been reviewed since 2005. This chapter also compares NASA’s process to that practiced by the European 
Space Agency (ESA) for reviewing its extended missions.  

SMD-WIDE CHARACTERISTICS OF SENIOR REVIEWS 

The Senior Review process is based on a proposal-driven paradigm. It begins with a division 
director issuing a call for proposals to the teams that operate missions under the management of that 
division. The call is timed such that the results can be used as input to NASA’s annual budgeting process. 
The call contains instructions for proposal preparation and submission and explains how the proposal will 
be reviewed by a Senior Review panel convened for this purpose. It delineates the criteria to be used by 
the panel in its assessment. It explains that a budget guideline for the amount of funding available for 
each mission has been developed by NASA within the Planning, Programming, Budgeting, and Execution 
(PPBE) process and specifies a period of performance. It contains the schedule for submission, typically 
about 4 months after the release of the call, and discusses how each team is to make an oral presentation 
to the panel. The call also contains links to supporting documents. Proposals are typically 30 pages in 
length, plus appendixes, although the guidelines have varied from division to division and review to 
review over the years. 

Senior Reviews are nominally conducted on a biannual basis, with Astrophysics and Planetary 
Science reviews occurring in even-numbered years and Earth Science and Heliophysics reviews occurring 
in odd-numbered years. Although the reviews happen on a regular basis, science missions are subject to 
different events and timelines, which can affect how recommendations are implemented or when 
individual reviews take place. For example, a launch failure of a new mission might occur after a Senior 
Review recommended termination of an earlier mission, thus requiring the earlier mission to be extended 
to avoid a gap in data continuity. Another possibility is that a spacecraft may be due to run out of fuel a 
few months after a scheduled review, and it would make little sense to hold a new review for only a short 
life extension. Perhaps most importantly, mission teams spend up to 6 months preparing for a Senior 
Review, and if the review and a major mission event are scheduled to occur around the same time, this 
could jeopardize the mission’s success by diverting the team members’ attention when they should be 
focused on mission operations. Specific examples of missions that were reviewed off-cadence are given 
later in this chapter. 

Within each division, a panel of experts evaluates the division’s extended-mission portfolio. 
Strategic or directed missions like NEOWISE (Near-Earth Object Wide-field Infrared Survey Explorer), 
principal investigator-led missions, and foreign partner-led missions to which SMD contributes, like Mars 
Express, are commonly, but not always, considered together. After its deliberations have concluded, the 
Senior Review panel issues a report containing its findings to the division director. A typical report 
contains an executive summary, an overview, and a digest of findings for each mission. Grades for the 
overall scientific merit of each mission are given. Occasionally, areas of special concern for some 
missions are called out and explained. The division uses this report as a basis for managing its portfolio of 
extended missions, including the following: 

 
1. Prioritizing the operating missions and projects; 
2. Defining an implementation approach to achieve division strategic objectives; 
3. Providing programmatic direction to the missions and projects for years 1 and 2 following the 

review; and 
4. Issuing initial funding guidelines for years 3 and 4 following the review. 
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DIVISION-SPECIFIC CHARACTERISTICS OF SENIOR REVIEWS 

Each SMD division tailors its Senior Reviews to take into account special conditions and aspects 
of the division and the way it performs its overall undertaking. Thus, there are differences in the reviews 
across the divisions. This section describes the division-specific aspects of the Senior Reviews and 
explains the rationales for these differences. 

Astrophysics 

Unlike the other divisions, the Astrophysics Division does not review all missions in the same 
manner. It has a different process for the Hubble Space Telescope and Chandra X-Ray Observatory than 
for the other astrophysics missions. These missions, as members of the Great Observatories, are treated as 
general-purpose facilities capable of addressing wide areas of astrophysics research and therefore are not 
tied to specific scientific goals. Thus, the Hubble and Chandra reviews are incremental or “delta” reviews 
that focus on changes since the previous review, with an emphasis on mission efficiency. 

Reduced funding guidelines provided to extended missions and to the Senior Review panels in 
recent years has become a key concern. For example, in its 2014 Senior Review,2 Spitzer was ranked 
highly enough to be fully funded, yet the projected budget for the set of extended missions would not 
accommodate that. Two lower-ranked missions would not add up to the required cut, so one option 
recommended by the Senior Review committee was to zero out Spitzer. In response, the Astrophysics 
Division provided some additional funding and allowed the Spitzer team to propose for an extension with 
reduced operations and higher risk. The reduced mission was approved and has delivered excellent 
science at lower cost. For the 2016 Astrophysics Senior Review, the guideline budgets were again 
insufficient to fully fund all of the missions under review. Following recommendations from the review 
panel to continue funding all of the missions, the Astrophysics Division reworked its constrained budgets 
to enable ongoing operation for all of the proposed missions. Some missions, however, are required to 
find further operating efficiencies to deal with reduced funding, and one mission is allocated a modest 
over-guide budget to augment its guest observer program.  

 
Finding: In recent Senior Review cycles, the Astrophysics Division has adopted effective options 
for dealing with budget constraints and the likelihood that Senior Review panels will recommend 
supporting extended missions at a level above the nominal total guideline. The extent to which 
future cycles will be able to rely on needed budget flexibility within the divisions, as well as the 
ability of the missions to find further savings, albeit with increased risk, is less clear, as is the 
question as to whether similar approaches are applicable in other SMD divisions. 
 
Recommendation: If a Senior Review recommends termination of a mission due to funding 
limitations rather than limited science return, NASA should allow the team to re-propose 
with an innovative, possibly less scientifically ambitious, approach at reduced operational 
cost and increased risk.  

Earth Sciences 

Earth Science Division (ESD) Senior Reviews3 begin with an assumption that a mission will be 

                                                      
2 The Astrophysics Division Senior Reviews are available at NASA Science, “Astrophysics: Documents,” 

http://science.nasa.gov/astrophysics/documents/.  
3 The Earth Science Division Senior Reviews are available at NASA Science, “Earth: Missions: Operating,” 

http://science.nasa.gov/earth-science/missions/operating/.  
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continued if its unique contributions are still rated highly and if the health of the instruments and 
spacecraft are still very good. An additional consideration for long-term Earth Science missions is the 
NASA policy requirement (NASA NPR 8715.6A) that maneuverable spacecraft that are terminating their 
operational phases at altitudes of less than 2,000 km above Earth shall have fuel and capability to reduce 
their remaining orbital lifetime to 25 years. 

The Earth Science Senior Reviews explicitly acknowledge the importance of long-term data sets 
and the overall value of data continuity for Earth science research. This importance leads to a different 
risk posture for Earth Science missions in comparison to other SMD missions. The other divisions 
explicitly tolerate higher risk in extended missions than they do for prime missions, with the idea that 
costs can be reduced by accepting higher risk levels. Because of national interests and needs, Earth 
Science has more stringent requirements for data continuity and cannot accept additional risk for extended 
missions as a way to reduce costs. 

The Earth Science Division explicitly takes into account national operational objectives in its 
Senior Review process. The 2005 National Research Council report Extending the Effective Lifetimes of 
Earth Observing Research Missions recognized that Earth science missions “have unique considerations, 
such as future operational utility and interagency partnerships, that distinguish them from space science 
missions” (NRC, 2005, p. 1), and the same report contained a recommendation that NASA consider the 
operational use of NASA Earth science missions in the mission-extension process. As a result, a National 
Needs Panel has been included in ESD Senior Reviews since 2007 (being more recently renamed the 
National Interests Panel). The findings of the National Interests Panel provide a secondary evaluation 
criterion; the primary evaluation criterion is the scientific merit of the mission. The National Interests 
Panel determines the value of the data sets for applied and operational uses that serve national interests—
including operational uses, public services, business and economic uses, military operations, government 
management, policy making, and nongovernmental organizations’ uses. The organizations that were 
represented during the 2015 Senior Review are as follows:  

 
 National Oceanic and Atmospheric Administration National Weather Service, 
 National Oceanic and Atmospheric Administration National Ocean Service, 
 Federal Aviation Administration, 
 U.S. Department of Agriculture, 
 Naval Research Laboratory, 
 U.S. Army Corps of Engineers, 
 Environmental Protection Agency, 
 U.S. Geological Survey, 
 Department of Homeland Security Federal Emergency Management Agency, 
 Centers for Disease Control and Prevention, 
 Alliance for Earth Observations, 
 International Association of Wildland Fire, 
 Conservation International, 
 National States Geographic Information Council, 
 U.S. Geospatial Intelligence Foundation, and 
 Urban and Regional Information Systems Association. 
 
ESD also supplements the Senior Review with an annual Operations Review. This review 

evaluates spacecraft and instrument health, mission operations functionality, anomalies, new or monitored 
risks, and science data product production for all division missions. 

 
Finding: NASA Earth Science missions have potential or realized nonresearch utility. Evaluating 
the applied and operational use of NASA Earth Science missions is a secondary factor in Senior 
Review evaluation and extension decisions. Recognizing and promoting the contribution of 
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NASA Earth Science data sets to applied and operational uses by public and private organizations 
(nonresearch purposes) increases the benefits from public investment in these missions. 
 
The committee notes that the above finding can also apply to some heliophysics missions as well. 

Heliophysics 

The Heliophysics Division recognizes the interconnectedness of its discipline by explicitly 
considering the contributions each mission makes to the Heliophysics System Observatory (HSO). The 
HSO consists of all operating Heliophysics missions, and its purpose is to investigate the behavior of the 
entire interconnected heliophysics domain through simultaneous multipoint sampling throughout that 
domain. The Senior Review panel evaluates the contributions of each mission to the HSO and reflects 
these evaluations through a separate set of scores reported alongside the scores of overall scientific merit. 

Heliophysics extended mission proposals include a 10-page Mission Archive Plan as an 
appendix. This appendix describes the data products of the mission and how they will be archived for use 
by the research community. (Similar data archiving plans are required for the other divisions’ extended 
mission proposals as well.) 

Like the missions of the Earth Science Division, the missions of the Heliophysics Division collect 
data that are used by other agencies. The Senior Review includes a mechanism to include input from these 
agencies. Because data from some current missions are being used by the National Oceanic and 
Atmospheric Administration (NOAA), the 2015 Senior Review panel included a scientist from NOAA’s 
Space Weather Prediction Center.4 

Planetary Science 

The Planetary Science Division incorporates flexibility into its regimen of mission review with 
occasional mission-specific adjustments to review timing due to the special constraints of planetary 
missions, such as target body encounters and critical mission events that require the undivided attention of 
the team members who would also be charged to write the Senior Review proposal. Flexibility has also 
been employed to recognize other aspects of planetary missions. For example, a 3-year proposal was 
requested from Cassini in the 2014 Senior Review in recognition that the mission’s “Grand Finale” 
scenario would require slightly more than the nominal 2-year extension period, but the mission would 
then be terminated due to lack of fuel and the need to dispose of the spacecraft for reasons of planetary 
protection. Therefore, Cassini was not reviewed in the 2016 Senior Review.5 The Planetary Science 
Division also convenes out-of-sequence reviews as needed for missions that enter into extended 
operations off-cycle. 

The Planetary Science Senior Review panels are sometimes split into separate subpanels by 
subject matter. In 2014, the Mars Exploration Program missions under review were considered by a 
separate group of reviewers from the other missions and this division was retained in 2016. The division 
indicated that separate review panels are used primarily because the Mars missions are parts of an 
integrated program, where the value of each mission is not independent of the other. The non-Mars 
Exploration Program missions are viewed as independent from one another.  

                                                      
4 The Heliophysics Division Senior Reviews are available at NASA Science, “Heliophysics: Missions: Senior 

Review Reports,” http://science.nasa.gov/heliophysics/senior-review/.  
5 “Report for Planetary Mission Senior Review 2016,” letter from J. Douglas McCuistion to James Green, 

Planetary Science Division Director, NASA Headquarters, June 17, 2016, 
http://solarsystem.nasa.gov/missions/2016seniorreview. 
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STAKEHOLDERS 

As part of its assessment process, the committee heard from various Senior Review stakeholders, 
including the NASA SMD associate administrator and the four division directors, panel chairs from the 
most recent Senior Reviews in each division, and principal investigators or science team leads for at least 
one large and one small mission currently in extended phase in each of the divisions. These presenters 
represent the immediate stakeholders of the Senior Review process—that is, the NASA Headquarters 
program executives, the review panels, and the mission teams. Each of the stakeholders has their own 
interests and perspectives on various aspects of the Senior Review process and on the overall value of 
Senior Reviews.  

NASA Headquarters 

The Senior Reviews are essential for NASA assessment of the scientific return and costs of 
missions in extended phases. In some cases, it is obvious that a mission has reached the end of its 
scientific productivity, but in most cases missions remain healthy with continued scientific return. In a 
cost-constrained environment, information is needed on the absolute worthiness of the missions and the 
relative importance of their future scientific promise. Implementation and cost information from the 
mission teams also is important for planning future budgets. 

Review Teams 

The review panels represent the community in assessing the NASA portfolio of missions in 
extended phase. There are trade-offs between the cost and benefit of operating current missions and 
applying the funding to other areas of NASA science, and the SMD divisions utilize the reports from the 
Senior Review panels to refine initial allocations of funding among the extended missions as well as for 
deciding whether to allocate additional funding from elsewhere in the science portfolios.. There is 
significant work involved for the panel members, who must carefully assess each mission and prepare the 
final report. Recent panel chairs indicated that they believed that a minimum period of six to eight weeks 
between receipt of proposals and the panel meeting with the mission teams was required to effectively 
review and assess the proposals. They recommended that the panels have at least four weeks to read the 
proposals and to formulate questions for the mission teams. The committee considered the substantial 
workload on the community in formulating its assessments below. The panel members serve without 
compensation. The community and NASA Headquarters owe a huge debt of gratitude to the review 
panels for this essential work. 

Mission Teams 

For the mission teams, the preparation of Senior Review proposals and presentations requires a 
tremendous amount of work. Some of the work may be needed in any case for future planning, but 
substantial extra effort is needed to prepare formal proposals for the Senior Review. According to many 
of the mission team members who met with the committee, it typically requires up to 6 months of every 
2-year period to prepare for and present at a Senior Review, which diverts mission teams from producing 
scientific results with their spacecraft during that period. Representatives from mission teams reported 
that there are commonly a large number of questions from the panel with very limited time for the 
mission teams to prepare responses. They suggested that the review panels should provide the questions 
to the proposers a minimum of 2 weeks before the panel meets with the teams. It is clear that this process 
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presents a workload on the mission teams that could reasonably be called burdensome and therefore 
represents an important consideration for the committee. 

 
In summary, the reviews are a huge amount of work for all stakeholders. NASA invests 

considerable resources on the reviews. A substantial amount of effort goes into choosing panels without 
conflicts of interest and in preparing the call for proposals. The mission teams spend a significant fraction 
of their time and effort preparing proposals, answering questions, and presenting to the Senior Review 
panels. The review panels devote a significant amount of time to reading and accurately reviewing the 
proposals.  

 
Finding: Flexibility in scheduling the Senior Reviews—for example, the ability to change the 
timing of individual reviews to avoid mission-critical events—is valuable for NASA’s science 
divisions. 

 
Recommendation: NASA science divisions should be allowed to conduct reviews out of 
phase to allow for special circumstances and should have the added flexibility in organizing 
their reviews to take advantage of unique attributes of each division’s approach to science. 
 
Finding: At times, the Senior Review process becomes too compressed, and insufficient time is 
allocated for some of the stages that are essential for an effective Senior Review. 

 
Recommendation: Each of the divisions should ensure that their timelines allocate sufficient 
time for each stage of the Senior Review process, including a minimum of 6 to 8 weeks from 
distribution of proposals to the panels until the panel meets with the mission teams. The 
panels should have at least 4 weeks to review the proposals and to formulate questions for 
the mission teams, and the mission teams should be allocated at least 2 weeks to generate 
their responses to the panel questions. 
 
The committee recognizes that some of these recommendations have already been in practice for 

some divisions (such as the length of time allocated to a panel to review the proposals) and believes that 
they should be adopted in general for all Senior Reviews regardless of the division. These minimums are 
essential for obtaining the best quality recommendations from the review panels, and considering that 
NASA holds Senior Reviews on a regular cadence, the agency can plan for the reviews well in advance. 

 
Finding: Regular reviews of operating missions are essential. However, the current 2-year 
cadence creates an excessive burden on NASA, mission teams, and the Senior Review panels. A 
3-year cadence would ease this burden, while enabling timely assessment of the quality of the 
data returned from these missions and their potential for continued productivity. The committee 
judged that a 4- or 5-year cadence might be too long, given potential science developments and 
also changes in a mission’s health or overall capabilities. 

 
The committee recognizes that because the 2-year cadence is established in congressional budget 

authorization language, NASA alone cannot change to a 3-year cadence. The committee believes that 
NASA will have to work with Congress to seek a change in the requirement for Senior Reviews, but that 
the advantages of such a change are significant and can save money and effort while continuing to 
maximize scientific return from the space agency’s extensive fleet of science missions. 
 

Recommendation: NASA should conduct full Senior Reviews of science missions in 
extended operations on a 3-year cadence. This will require a change in authorizing 
language, and NASA should request such a change from Congress. The Earth Science 
Division conducts annual technical reviews. The other divisions should assess their current 
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technical evaluation processes, which may already be sufficient, in order to ensure that the 
divisions are fully aware of the projected health of their spacecraft, while keeping these 
technical reviews moderate in scope and focused on changes since the preceding review. 
 
As the recommendation indicates, an important component of this revised 3-year cadence is 

conducting regular assessments of the health of the spacecraft and instruments. This is necessary so that 
both the agency and proposers are aware of any potential issues that might result in shorter useful 
lifetimes and can plan accordingly. NASA’s science divisions already have provisions for doing this. 
These assessments do not need to be extensive, and their primary focus can be assessing changes since the 
last review.  

The committee heard from the division director of the Earth Science Division that continuity of 
scientific measurements is a priority, because climate and other studies benefit most from similar 
measurements over time. Mission budgets are normally only sufficient to cover the processing, validation, 
and distribution of the approved standard data products. Innovative uses of current missions and the 
development of new data products can be, and often are, proposed through the ROSES (Research 
Opportunities in Space and Earth Sciences) investigation solicitations.  

Conversely, in the other divisions, many mission teams believe that they must emphasize “new 
science,” over continuity measurements in their proposals, to be competitive. A careful reading of recent 
Senior Review proposal guidelines documents (Heliophysics 2015, Astrophysics 2014 and 2016, and 
Planetary Science 2014 and 2016) shows that new science is not required for a mission’s extension, 
although the potential for (or enabling of) new science may be evaluated. However, due to the emphasis 
on demonstrating that the primary science goals must help achieve NASA’s Science Plan or decadal 
survey objectives, in combination with the idea that the objectives of the prime phase of the mission have 
already been satisfied before proceeding into extended phase, it is easy to see how such a de-facto 
requirement could be inferred by both the mission teams and the review panels evaluating the proposed 
activities. This de-facto requirement is then underscored by the competitive environment of the Senior 
Review process. For example, in the case of the Planetary Science Division, language stating that a 
criterion of the evaluation is the “potential for groundbreaking science” has been widely interpreted by 
recent Senior Review panels and proposing mission teams as a requirement for new science and a 
diminution of continuity science. 

 
Finding: In some divisions, there is greater prioritization of new or ground-breaking science, 
whereas in other divisions continuity of observations may be emphasized. 
 
Recommendation: In order to obtain best value for money, NASA should encourage 
extended mission proposals to propose any combination of new, ground-breaking, and/or 
continuity science objectives. 

INCORPORATION OF LESSONS LEARNED INTO SENIOR REVIEWS 

Based on inputs from across the divisions, lessons learned include the following: 
 

 Maximizing the number and experience of returning panel members facilitated the work of 
the Senior Review panels. The goal of ESD is to recruit panel members for a two-review 
commitment, with half of the panel returning from the prior review and half of them new. 
Other divisions have carry-over members, but the numbers are not specifically called out. 
Inclusion of some early-career panelists is also desirable in that it promotes opportunities for 
presentation of new perspectives as part of the review process. 

 The process for developing questions for the mission teams’ oral presentations to the panel 
still needs improvement in some divisions. Although having a few standard questions can 
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facilitate discussion between the panel and the missions, there also need to be mission-
specific questions to fill in possible blanks and to provide essential clarifications without 
overloading the mission team or the review panel. 

 The budget evaluation process has been improved over the years. More detail is now 
requested in the proposal and more support from NASA’s SMD/Resources Management 
Division Assessment and Evaluation Group in recent Senior Reviews greatly improved the 
use of the proposal budget information in decision making. 

 In some instances, better coordination is needed with the PPBE (NASA’s annual budget 
planning) decision process and the PPBE submittal schedule. 

 
Recommendation: NASA SMD should assemble Senior Review panels that 

 Are comprised primarily of senior scientists knowledgeable about and experienced in 
mission operations so as to ensure that the operational context of the science being 
proposed and evaluated is considered in the review (individuals with operations and/or 
programmatic expertise may also be included as needed); 

 Are assembled early to avoid or accommodate conflicts of interest and ensure 
availability of appropriate expertise;  

 Include some continuity of membership from the preceding Senior Review to take 
advantage of corporate memory; 

 Include some early-career members to introduce new and important perspectives and 
enable them to gain experience for future Senior Reviews. 

 
Because continuity from one Senior Review to the next is valuable, introducing early-career members 
into the Senior Review process provides a way to ensure that future reviews will have a pool of scientists 
experienced in the process. 

SUMMARY HISTORY OF MISSIONS REVIEWED BY THE SENIOR REVIEWS 

The Senior Review process has been used by SMD to review a total of 73 science missions since 
2005. Most missions have been reviewed several times in this interval, with proposals for a total of some 
290 mission-years evaluated. Tables 3.1 through 3.4 present a history of these reviews for each division. 
The process has generally worked as it was conceived, and recommendations to terminate missions that 
were returning useful data have been infrequent. Exceptions for Astrophysics are GALEX and WISE in 
2010 and Spitzer in 2014. Three missions were recommended for termination in Earth Sciences: 
ACRIMSAT in 2007 and 2009, ICESat in 2009, and EO-1 in 2009, 2013, and 2015.6 In Planetary 
Science, no missions were recommended for termination in the 2014 Senior Review. However, both the 
Lunar Reconnaissance Orbiter and Opportunity were eliminated from funding in the President’s fiscal 
year (FY) 2015 and FY2016 budget proposals. Congress later added money to continue these missions. 
The results of the four divisions’ Senior Reviews since 2005 are presented in Tables 3.1, 3.2, 3.3 and 3.4. 

There also have been circumstances that have caused the NASA extended mission fleet to be 
operated in a manner that deviated from the recommendations of the Senior Reviews. Other than  

                                                      
6 EO-1 was recommended for termination in 2009. However, the Senior Review specifically allowed for further 

consideration of the mission in the 2011 Senior Review. Utilization of EO-1’s instruments increased significantly 
after 2009 and by 2011 the spacecraft was increasingly used for disaster monitoring. The 2011 Senior Review 
recommended a continued mission, although it also called for improvements in data utilization. The 2013 Senior 
Review recommended an additional 2-year extension but did not recommend that the mission be allowed to propose 
to the 2015 Senior Review. The EO-1 team responded by indicating that there was still a demand for EO-1 data and 
they were allowed to propose to the 2015 Senior Review. The 2015 Senior Review recommended an additional year 
of operation but that EO-1 begin the termination phase by October 2016, which is the current plan. 
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TABLE 3.1  Astrophysics Division Senior 
Reviews by Year and Missions Reviewed 

Mission 20
06

 

20
08

 

20
10

 

20
12

 

20
14

 

20
16

 

Chandra • • • • • 

Fermi • • • 

FUSE • 

GALEX • • • 

Gravity Probe B • 

Hubble • • • 

INTEGRAL • • • 

Kepler • • • 

MaxWISE • 

NuSTAR • • 

Planck • • 

RXTE • • 

Spitzer • • • • 

Suzaku • • • 

Swift • • • • • • 

WISE • 

WMAP • • • 

XMM-Newton • • • • 

 
 

TABLE 3.2  Earth Science Division Senior 
Reviews by Year and Missions Reviewed 

Mission 20
05

 

20
07

 

20
09

 

20
11

 

20
13

 

20
15

 

ACRIMSAT • • • • 

Aqua • • • • • 

Aquarius • 

Aura • • • • 

CALIPSO • • • • • 

Cloudsat • • • • • 

ERBE • 

EO-1 • • • • • 

GPS Science • 

GRACE • • • • • • 

ICESat • • • 

Jason-1 • • • • • 

OSTM • • • 

QuikSCAT • • • • • • 

SAGE • 

SORCE • • • • • • 

Terra • • • • • • 

TOMS • 

TRMM • • • • • 

UARS • 

 
 

budgetary shortfalls, significant deviations have been necessary for a variety of reasons. An example is 
ACRIMSAT, which was extended after the failure of the Glory launch in 2011 to provide a backup for 
total solar irradiance measurements performed by SORCE. Similarly, an out-of-sequence Senior Review 
was convened to continue QuikSCAT when the performance of the RapidScat instrument on the 
International Space Station became unpredictable. These experiences underscore the value of allowing 
SMD to have flexibility in interpreting the Senior Review recommendations.  

One thing that is apparent in Table 3.4 is that the Planetary Science Division has held a number of 
reviews in between the normal 2-year Senior Review cycle, such as Cassini in 2007 and 2009 and 
MESSENGER in 2011 and 2013. These off-year reviews were prompted by individual mission needs, 
indicating that a certain degree of flexibility on the cadence for Senior Reviews has been necessitated by 
mission operations. 

EXTENSION OF EUROPEAN SPACE AGENCY SCIENCE MISSIONS 

NASA is not the only agency that operates long-lasting science missions. ESA also operates a 
number of Earth science, heliophysics, astrophysics, and planetary science spacecraft. Like NASA, ESA 
has also developed a process for reviewing missions after their prime phase has been completed. ESA  
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TABLE 3.3 Heliophysics Division Senior 
Reviews by Year and Missions Reviewed 

  20
05

 

20
08

 

20
10

 

20
13

 

20
15

 

ACE • • • • • 

AIM • • • • 

CINDI • • • 

Cluster • • • • 

FAST • • 

Geotail • • 

Hinode • • • 

IBEX • • 

IMAGE • 

IRIS • 

Polar • 

RHESSI • • • • • 

SDO • 

SOHO • • • • 

STEREO • • • • 

THEMIS • • • • 

TIMED • • • • • 

TRACE • 

TWINS • • • 

Ulysses • 
Van Allen 
Probes 

• 

Voyager • • • • • 

Wind • • • • • 

  

TABLE 3.4  Planetary Science Division Senior Reviews 
by Year and Missions Reviewed 

  20
06

 

20
07

 

20
08

 

20
09

 

20
10

 

20
11

 

20
12

 

20
13

 

20
14

 

20
16

 

Cassini • •  •  • 

Curiosity     • • 

Dawn     • 

Deep Impact    •  

GRAIL    •  

LRO    •  • 

MAVEN     • 

MER •  •  •  •  • • 
Mars Global 
Surveyor 

•  
 

 
 

 
 

 
  

Mars Express •  •  •  •  • • 

MRO  •  •  •  • • 

MESSENGER   • • 

Odyssey •  •  •  •  • • 

Phoenix  •    

New Horizons     • 

Stardust-NExT  •    
 

 

 
 

 
 
 

 
makes a commitment for the first 2 years of extended phase, but after that conducts Senior Reviews for 
the missions to extend them for 2 years at a time. 

For ESA missions in which there is a NASA contribution (e.g., Rosetta), ESA approaches the 
international partners, such as NASA, and verifies the status of their commitment before the Senior 
Review. That information is then presented to the ESA Senior Review. 

ESA conducts its Senior Reviews on a 2-year cadence, like NASA. According to an ESA 
representative who spoke to the committee, this is a compromise. This rolling process provides a 
sufficient continuity for managers to plan and provides checkpoints to ensure that there are sufficient 
reviews to change course if the mission is no longer compelling. The representative stated that some 
people have called for yearly reviews of ESA programs. 

According to the ESA representative, there is no pressure for immediate balance across science 
disciplines when Senior Reviews are conducted. However, he stated that there is an understanding that the 
goal is a long-term balance. ESA ranks science first and foremost; the same is true for mission proposals 
(not just extensions). 
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According to the ESA representative, scientific proposals have a page limit (approximately 12 
pages) that is significantly shorter than NASA’s requirements (which have varied from 20-50 pages). 
According to the ESA representative, this short length is not an excessive burden for the scientific 
community, but he also stated that the mission operations people would prefer longer proposals so as to 
provide more details of their plans and capabilities. Proposers for extended missions are asked to make an 
oral presentation to the peer review committee. The committee discussed the issue of page length for 
proposals with NASA proposal teams and determined that the NASA requirement is more appropriate for 
NASA missions. Some teams noted that shorter page requirements do not necessarily save preparation 
time because teams spend more time and effort deliberating on what should be included and excluded, 
and excluding important data may limit a review panel’s ability to understand the proposal. 

During the last Senior Review process, 10 missions were put up for extended missions. Eight of 
these were approved for extension. The two that were not extended were reaching the end of their 
technical lifetimes and could not be extended. 

CONCLUSION 

The committee did not identify major problems with NASA’s overall approach to Senior 
Reviews, although it did conclude that the agency needs to provide more time for its review teams in 
order to ensure that they can devote appropriate time to conduct quality reviews. The committee also 
concluded that NASA’s divisions also communicate with each other about review processes best practices 
and believes that this is a valuable practice. 

As the divisions have performed more Senior Reviews, the details of the process have become 
more stable from cycle to cycle. Stability includes consistency of information requested, proposal format, 
timing for the various stages of the review, and so on. Maintaining best practices through regular 
interactions and feedback between NASA Headquarters, the mission teams, and review panels will help to 
ensure that this consistency is maintained while also providing opportunities for incremental 
improvements in the process. 
 

Finding: As the divisions have performed more Senior Reviews, the details of the process have 
become more stable from cycle to cycle. Stability includes consistency of information requested, 
proposal format, timing for the various stages of the review, and so on. 
 
Recommendation: NASA’s Science Mission Directorate division directors should continue 
to communicate among themselves to identify and incorporate best practices across the 
divisions into the Senior Review proposal requirements and review processes and 
procedures. 
 
Recommendation: In its guidelines to the proposal teams and the Senior Review panels, 
NASA should state its intention to solicit feedback from its proposal teams and review 
panels about the suitability of the proposal content and review process. After obtaining such 
feedback, NASA should respond and iterate as needed with stakeholders to improve the 
review process, where possible. 
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4 
 

The Balance of New Missions Versus Extended Missions 
 
 

The committee’s task includes addressing the proper balance between new and extended 
missions. NASA’s Science Mission Directorate (SMD) is currently operating approximately 60 science 
missions, of which approximately three-fourths are in their extended mission phase and one-fourth in 
their prime phase. This complementary arrangement has proved effective in enabling all four mission 
divisions to achieve scientific goals that could not have been reached with either primary or extended 
missions alone.  

An example of a scientific goal that could only have been reached with both prime and extended 
missions concerns the magnetized plasmas that fill near-Earth space and produce long-range interactions 
that can be understood only by taking measurements at widely distributed observing points and 
continuing to monitor them over decades. By extending missions beyond their prime lifetime and adding 
additional spacecraft every few years, NASA’s Heliophysics Division has created what is referred to as 
the Heliophysics System Observatory (HSO), a network of spacecraft that monitors the entire heliosphere 
with a special emphasis on a volume of space with a radius 200 times that of Earth’s orbit. In 2016, the 
HSO, which includes the STEREO (Solar Terrestrial Relations Observatory) spacecraft in the same orbit 
as Earth and the two Voyager spacecraft more than 100 astronomical units from the Sun, was comprised 
of 18 missions (28 spacecraft). Only one mission, the four-spacecraft Magnetospheric Multiscale mission, 
is in prime phase (see Figure 4.1). Thus, extended missions are an essential component of the ensemble of 
HSO spacecraft that is monitoring the interconnected system of the solar wind and Earth as well as the 
outer boundary of the heliosphere. The importance of the HSO is acknowledged in the first research 
recommendation of the 2013 heliophysics decadal survey (NRC, 2013), which calls for continued support 
of the complement of spacecraft that comprise it. 

Other divisions have equally compelling reasons to extend the operation of missions beyond their 
prime phases. For example, the Cassini mission of the Planetary Science Division has gathered extensive 
data on Saturn’s small moon, Enceladus, during its extended phases. Only during the extended operations 
were the properties of the vapor plumes of this small moon established, and in addition, it was shown that 
Enceladus likely harbors a global-scale ocean beneath its icy surface. Data collected during the mission’s 
extensions also revealed that the puzzling periodicities of electromagnetic phenomena at Saturn vary in 
frequency with season. By operating missions into their extended phases, missions in the Earth Sciences 
Division have monitored the retreat of the Antarctic ice shelf and established the temporal variation of 
atmospheric gases and other key elements of the coupled atmosphere-ocean system. Astrophysics has also 
benefitted from missions in their extended phase, including new discoveries made by the Kepler, Spitzer, 
and Chandra observatories. 

Extended missions require resources, which naturally raises the question of how much SMD 
resources should be allocated for this purpose and whether typical expenditures are the proper amount. 
The most recent budget figures indicate that SMD is spending approximately 12 percent of its budget on 
extended missions. NASA officials stated to the committee that although the fraction of funding going to 
operating missions in extended phase has fluctuated over time, it has, on average, remained close to the 
present 12 percent. As demonstrated in Chapter 2 of this report, major scientific discoveries have been 
made by NASA missions in extended phase. This record of scientific productivity leads the committee to 
conclude that continuing most NASA missions into extended phase is justified.  
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early- or mid-career scientists, the experiences gained in an environment conducive to learning on the job 
provide valuable payback to the enterprise in the form of much more experienced personnel to perform in 
the pressure cooker of mission formulation and development. Thus, a robust portfolio of extended 
missions helps to provide the workforce for future new missions. 

The committee considered the issue of appropriate balance between prime and extended phase 
missions, initially seeking to identify how much NASA currently spends on prime and extended missions 
in each division. A key question the committee considered was the approximate buying power of the 
funds that support mission extensions—in other words, if a division canceled all of its extended missions 
and spent all of that money on new missions, how many new missions could it buy? More specifically, 
the data show that if the Astrophysics Division canceled and turned off all of its missions currently in 
extended phase—Hubble, Chandra, Spitzer, NuSTAR, and so on—it could purchase less than one 
MIDEX (Medium-Class Explorer) mission per year, or approximately one additional flagship mission 
every decade. Of course, this would come at tremendous cost in scientific productivity—ending data 
return from eight operating missions in return for adding perhaps two new medium-sized missions every 
3 years.  

The calculation for the Earth Science Division indicated greater adverse impact: ending all Earth 
science missions in extended phase—such as Aura, Terra, Aqua—could release funding for 
approximately one new Earth Systems Science Pathfinder mission every 2-plus years, or one new flagship 
class mission every 12 years. For the Heliophysics Division, the effects were also disproportionate: 
ending all current extended missions could provide funds for approximately one new MIDEX mission 
every 4 to 5 years, or two new Small Explorers (SMEX) every 3 years, or a new flagship class mission 
every 19 years. The scientific loss to heliophysics, however, would be tremendous. The Heliophysics 
System Observatory, which relies upon multiple observations at multiple locations, would simply 
collapse. 

The results for the Planetary Sciences Division are similar: canceling all operating extended 
phase missions—Curiosity, Opportunity, Lunar Reconnaissance Orbiter, Mars Reconnaissance Orbiter, 
MAVEN, Cassini, and even New Horizons, which will finish its prime phase soon—would result in 
approximately one new Discovery mission every 2-plus years, or one new flagship class mission every 
decade (see Table 4.1). 

Of course, it would be possible to cancel some but not all extended-phase science missions in a 
division. Criticism of continuing to fund extended science missions (see Chapter 1) is usually formulated 
as a proposal to spend an undefined “less” on extended missions and to devote the money saved to new 
mission development. But what Table 4.1 demonstrates is that even drastic cuts to the extended missions 
budgets would result in very few new science missions. Another way to look at this trade-off is that 
because each of the divisions spends approximately 50 percent of its budget on new development, and 
approximately 12 percent on extended missions, ending all extended missions in a division would 
increase the respective development budget by approximately 25 percent. Thus, even the drastic action of 
ending all extended missions has a relatively limited effect on both development spending and the number 
of new missions. 

The cost to science of ending all extended science missions, however, would be catastrophic. In 
some cases, it could create gaps during which no new data is being returned from any mission for a 
division. Such breaks could destroy some scientific disciplines, particularly Earth science and 
heliophysics, which require understanding their subjects via multiple observations made by multiple 
spacecraft over many years. For planetary science, ending extended missions at Mars would not just 
impact science, but could mean shutting off spacecraft that provide data relay for other spacecraft, thus 
eliminating infrastructure needed to support both prime and extended missions (see Figure 4.2). 
Astrophysics benefits by using multiple observatories—many in their extended phase—to take data at 
different wavelengths simultaneously to understand how many astrophysical systems work. Ending 
missions that have many productive years left would also be tremendously wasteful—the equivalent of 
throwing away a functioning appliance at the end of its warranty. Finally, eliminating all extended 
missions would contradict the recommendations in the divisions’ decadal surveys. 
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Of course, ending many or all extended missions is an extreme example, but it demonstrates the 
limitations of what can be accomplished even by making major changes to the current balance of 
spending on extended missions. Although the committee could not establish a clear definition of balance, 
it was able to conclude that substantial changes in the current balance between new and extended 
missions would be highly deleterious in terms of scientific return. 
 

Finding: NASA’s extended science missions constitute approximately three-fourths of the 
missions in flight, but cost a relatively small percentage of the overall SMD budget, on average 
12 percent over the last 5 years.  

 
Finding: Eliminating all of the extended missions would: 

 Increase the funds available for new development only by approximately 25 percent; 
 Make it difficult or impossible to achieve many objectives of decadal survey science; 
 Adversely and significantly impact SMD’s overall science return. 

 
Finding: The current balance between prime and extended missions is reasonable. 

 
Recommendation: NASA should continue to provide resources required to promote a 
balanced portfolio, including a vibrant program of extended missions. 

CONCLUSION 

Although the committee did not develop a formal definition or recipe for the ideal balance 
between prime and extended missions, it found the present mix to be excellent and identified no basis for 
substantially altering the current balance based upon either scientific or monetary considerations. 
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5 
 

Innovative Cost Reductions for Extended Missions 
 
 

The committee’s charge included identifying possible innovative ways to reduce costs for 
extended missions. During the course of this study, the committee heard several presentations addressing 
cost reduction approaches for extended missions and discussed specific case studies in the search for 
overarching principles that might be applied to other missions. The committee evaluated approaches to 
cost savings within the context of increased risk and potential impacts on science return. 

COLOCATING OPERATIONS 

One method for increasing efficiency for space science missions is colocating multiple mission 
operations at a given location, which is an approach that NASA already takes for many of its missions. 
For example, NASA’s Goddard Space Flight Center (GSFC), the California Institute of Technology’s 
(Caltech’s) Jet Propulsion Laboratory (JPL), and the Johns Hopkins Applied Physics Laboratory (APL) 
each operate multiple missions using their on-site operations centers. In some cases, these missions are 
concentrated by type—for example, Earth science missions at GSFC and planetary missions at JPL. 
However, GSFC also operates the Lunar Reconnaissance Orbiter as well as a number of astrophysics 
missions, JPL operates some Earth science and astrophysics missions, and APL operates Earth science, 
heliophysics, and planetary missions. The committee notes that there is no inherent reason that all similar 
missions have to be handled by the same operations center.  

Although colocating multiple missions operations at a single location is likely to produce added 
efficiencies due to some level of commonality in spacecraft operations, the Science Mission Directorate’s 
(SMD’s) current portfolio includes competed science missions and principal investigator (PI) teams that 
provide NASA with different opportunities to draw on scientific expertise that is spread throughout the 
United States. Added operations efficiencies and scientific synergies may result from colocating science 
operations and mission operations close to, or at, the host institution for the science team, as exemplified 
by the Chandra X-ray Center located in Cambridge, Massachusetts, and the Infrared Processing and 
Analysis Center at Caltech.  
 

Finding: Colocating mission operations centers may provide added efficiency (and cost savings) 
in some cases. The location and responsibilities of the science team and the potential advantages 
of colocating the science and mission operations teams are also important factors, so flexibility 
and trade studies are required when deciding how to organize and where to site science and 
operations centers. 

INNOVATIVE APPROACHES 

The committee also was briefed on the innovative approaches adopted to continue operations 
during the extended phase of several missions, including the Galaxy Evolution Explorer (GALEX), the 
Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX), and the Mars Exploration Rover 
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Opportunity. The level of NASA support varied for the later stages of these missions, as discussed below, 
and this factor should be kept in mind when assessing the effectiveness of the approaches. 

The GALEX mission provided important ultraviolet astronomy observational capabilities (see 
Figure 5.1). It transitioned from prime to extended phase in 2007 and was highly recommended in the 
2004, 2006, and 2008 Astrophysics Senior Reviews. However, the 2010 Senior Review recommended 
only 2 more years of operations, followed by close-out. That review also opposed a suggested move of 
the operations to Caltech, saying that the move would introduce unnecessary risk and would provide no 
cost savings, given the limited remaining time they were recommending for operating the mission. 
Subsequently, NASA decided to terminate the mission after just 1 year. The mission PI and the science 
team negotiated with NASA to transfer operations and ownership of the satellite to Caltech, but several 
issues arose, including the question of liability associated with possible collisions on-orbit and eventual 
Earth re-entry. Ultimately, this issue was surmounted by a NASA decision to “loan” the telescope to 
Caltech, with NASA retaining ownership. However, no NASA funding was provided, so the GALEX 
team and Caltech endeavored to raise just over $1 million for a bare-bones operation of the satellite for 
approximately 1 year. Several universities and telescope consortia purchased observing time, JPL funded 
efforts to complete the galactic plane portion of an all-sky survey, and the PI team raised modest amounts 
of additional private funding. Employment of student operators on a part-time basis also reduced costs 
somewhat. Although these efforts successfully extended the mission, there was no immediate funding or 
time for science research. According to the PI, the team was exhausted after 1 year, and the satellite was 
“returned” to NASA and decommissioned. The PI informed the committee that he would not recommend 
this option to future missions. An unanswered question is the extent to which this approach might have 
been less taxing on the team, with the possibility of operating in this mode for longer than 1 year, had 
NASA at least provided partial funding support. 

Continuing GALEX operations after the end of NASA funding involved a rather rushed effort 
with some complicated issues. It is possible that with more advance notice and careful planning, taking 
advantage of lessons learned, that this kind of effort could be less stressful and more successful in some 
future situations. 

There could be an important ancillary benefit to efforts to transition older missions to a NASA- 
university/consortia partnership: increasingly, the development of space hardware and missions is 
concentrated at NASA centers. Encouraging universities to become involved in extended-phase missions 
may be one way of rekindling a broader involvement in space hardware and space science. However, this 
may only be applicable to smaller missions with more focused scientific objectives. Observatories as 
large and complex as the Hubble Space Telescope and the Chandra X-Ray Observatory cannot easily be 
transitioned in this way; given the breadth of science that they continue to enable even in their extended 
phase, it is important that operations do not change drastically. 

SAMPEX was NASA’s first Small Explorer mission. Launched in 1992, SAMPEX was designed 
as a 1-year mission, with a goal of 3 years, to study space weather through measurements of particles and 
cosmic rays in near-Earth space as a function of solar activity. The mission was extended to cover a full 
solar cycle, and NASA support ended in 2004. However, data continued to be acquired for another 8 
years, with the Aerospace Corporation funding the downloading and Bowie State University operating the 
spacecraft (starting in 1997) as an educational tool for its students. A GSFC scientist obtained a NASA 
grant to process the 2004-2012 data and to provide access to the data for the science community. 
SAMPEX continued to provide valuable science data until it re-entered Earth’s atmosphere in late 2012, 
just over 20 years after it was launched. Without question, SAMPEX exceeded expectations, thanks in 
large part to the confluence of factors listed above that enabled the last 8 years of the mission. However, it 
does not seem realistic to plan future extended missions based on highly uncertain support relying on 
corporate funding commitments, university interest for educational purposes, or grants that must be 
competitively secured.  
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during development of ground systems and flight procedures, as well as when formulating 
staffing and budgetary plans for the prime and extended-mission phases. 

 
The committee determined that communication about Senior Review processes among SMD 

divisions is relatively good and encourages the divisions to continue this communication about other 
aspects of extended-mission operations. There are many possible ways that NASA could ensure open 
communications and dissemination of information, including websites, conferences, and even contractual 
communications. As the committee has noted, the best time to begin preparations for extended missions is 
when the mission is still in its formulation phase, a time when decisions can have significant impacts 
many years after the prime mission has ended. 

REPURPOSING EXTENDED MISSIONS TO CREATE NEW SCIENCE MISSIONS 

Upon completion of a prime mission and during the transition to an extended phase, opportunities 
may arise to consider a major redirection of the project. One example is the Deep Impact mission that was 
launched in 2005 to study the interior of comet Tempel 1. On July 4, 2005, the spacecraft’s impactor 
collided with the comet, producing effects that were observed by the main spacecraft. Shortly afterwards, 
Deep Impact’s prime mission ended, even though the spacecraft was still healthy. NASA then sought 
proposals for an extended mission and eventually selected and merged two proposals that included both 
original and new members of the Deep Impact team. The extended mission was named EPOXI 
(Extrasolar Planet Observation and Deep Impact Extended Investigation). 

The EPOXI mission recycled the Deep Impact spacecraft to visit a second comet, Hartley 2. The 
November 4, 2010, flyby of Hartley 2 marked only the fifth time a comet had been visited by a 
spacecraft. The EPOXI mission flyby revealed that the rocky ends of comet Hartley 2 spew out tons of 
golf-ball to basketball-size fluffy ice particles, whereas the smooth middle area is more like what was 
observed on comet Tempel 1, with water evaporating below the surface and percolating out through the 
dust. Repurposing the Deep Impact spacecraft enabled NASA to take advantage of new ideas and a wider 
array of expertise that would have otherwise required NASA to initiate and fund the development of a 
whole new mission. 

Another example is the WISE (Wide-field Infrared Survey Explorer) mission, launched in 
December 2009. WISE surveyed the full sky in four infrared wavelength bands until the hydrogen cooling 
the telescope was depleted in September 2010. The survey continued as NEOWISE (Near-Earth Object 
WISE) for an additional 4 months using the two shortest wavelength detectors to detect previously known 
and new minor planets and to study asteroids throughout the solar system. NEOWISE enabled the 
discovery of the first known Earth Trojan asteroid. The spacecraft was placed into hibernation in February 
2011, after completing its search of the inner solar system. 

In response to increasing scientific interest and growing geopolitical concern about the possibility 
of near-Earth objects (NEOs) impacting Earth and the consequential impacts to human life and damage to 
the environment and economy, NASA’s Planetary Science Division reactivated the mission (as a directed 
mission of national priority and no longer subject to the Senior Review process) in December 2013, with 
the primary goal of learning more about the population of NEOs and comets that could pose an impact 
hazard to Earth. During its first 3 years of operations, NEOWISE characterized many NEOs and obtained 
accurate measurements of their diameters and albedos (how much light an object reflects). NEOWISE is 
equally sensitive to both light-colored asteroids and the optically dark objects that are difficult for ground-
based observers to discover and characterize. 

As of mid-April 2016, NEOWISE was approximately 73 percent of the way through its fifth 
coverage of the entire sky. The repurposing of this mission after its prime phase has provided a very cost-
effective means of addressing questions of great scientific interest and in this case of great importance to 
our planet’s, and our own, well-being. 
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A third example is provided by the Heliophysics THEMIS (Time History of Events and 
Macroscale Interactions during Substorms) mission. In this instance, a multi-spacecraft mission was 
partially repurposed to obtain new science. Originally composed of five spacecraft to study 
magnetospheric substorms, the THEMIS mission proposed that two spacecraft be diverted to lunar orbit. 
The new mission, called ARTEMIS, has provided important observations of the lunar wake (Wiehle et 
al., 2011), while the remaining three spacecraft constitute a revised THEMIS extended mission that 
continues to provide crucial observations of energy conversion processes in Earth’s magnetotail 
(Angelopoulos et al., 2013). 

 
Finding: Repurposing of extended missions, such as Deep Impact to EPOXI, WISE to 
NEOWISE, and THEMIS to ARTEMIS and THEMIS, is an extremely cost-effective approach 
for addressing new science opportunities and national interests. 
 
Recommendation: NASA should continue to encourage and support extended missions that 
target new approaches for science and/or for national needs, as well as extended missions 
that expand their original science objectives and build on discoveries from the prime phase 
mission. 

RISK ASSESSMENT AND ACCEPTANCE 

NASA mission and science operations budgets typically decrease significantly when a mission 
enters extended phase, which is normally expected and usually justifiable. After that, costs may reduce 
further as a consequence of additional performance improvements over time and learning-curve effects. 
However, after several years of extended operations, most missions have implemented all steps that safely 
can be taken to reduce cost. Further funding cuts increase risk, including a real loss of unique science or 
possible degradation or loss of a spacecraft. Based on the mission team presentations to the committee, 
there is a perception among proposal teams that NASA at times may not fully recognize the changed risk 
posture when reducing funding for mission extensions, instead assuming that funds for extended missions 
can be continually cut without ramifications. To be fair, NASA is at times under intense budget pressures, 
and agency officials may believe they have no choice other than to apply such cuts. Moreover, given the 
national interest needs met by Earth science missions, there is much less risk acceptance for extended 
missions by the Earth Science Division than the other divisions. Increased risk can take various forms. 
One example is that missions in extended phase may go for longer periods between communications 
sessions with ground control. This could mean that a problem on the spacecraft could go undetected and 
pose a threat to loss of an instrument or the spacecraft. Decisions by NASA and mission proposers to 
accept such risks have long been made for extended missions, but not everyone involved may be aware of 
the risks.  

 
Finding: Some divisions permit missions entering into or already in extended phase to accept 
increased risk, which is an inevitable consequence for aging spacecraft and science instruments 
and, at least for some divisions, an acceptable option in the context of reduced budgets. 

 
Recommendation: NASA should continue to assess and accept increased risk for extended 
missions on a case-by-case basis. The headquarters division, center management, and the 
extended-mission project should discuss risk posture during technical reviews and as part 
of the extended mission and subsequent Senior Review proposal preparation process, and 
all parties should be made fully aware of all cost, risk, and science trade-offs.  
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THE NEED FOR SUPPORT IN RESPONSE TO SPACECRAFT ANOMALIES 

In some instances, mission operations costs may also rise over time due changes in mission 
profile; the need to respond to anomalies that are commonly but not always age-related, such as 
deteriorating performance of flight systems; as well as inflation. For example, the complete loss of one 
radio receiver on Voyager 1 and the loss of frequency tracking capability on the remaining redundant unit 
required intense and costly operational workarounds, as did the failure of the high-gain antenna on 
Galileo during its prime mission phase. Historically, barring such extenuating operational cost drivers, 
extended missions often experience additional cuts to their budgets at subsequent Senior Reviews, which 
along with inflation, often result in disproportionate cuts to project-funded science activities. This is 
because mission management normally prefers to limit increased risk and, therefore, attempts to minimize 
cuts to the operations budgets. In turn, mission science teams then seek support from research and 
analysis programs. However, those programs are also under increasing funding pressure, which means 
that all-too-frequently science is diminished or sometimes not performed at all. 

 
Finding: Experience and knowledge gained during the prime phase frequently result in lower 
costs for extended mission operations, but occasionally there may be counteracting effects that 
can create upward pressure on operational costs.  
 
Finding: After the first few years of extended operations, most missions have implemented all 
(or almost all) practical steps to reduce costs. Further budget cuts often then result in 
disproportionate cuts to project-funded science activities, increasing risks that science will be 
diminished or not performed at all.  
 
Recommendation: Given the demonstrated science return from extended missions, NASA 
should continue to recognize their scientific importance and, subject to assessments and 
recommendations from the Senior Reviews, ensure that after the first two Senior Reviews, 
both operations and science for high-performing missions are funded at roughly constant 
levels, including adjustments for inflation. 

CONTROL OF COSTS AND RISKS RELATED TO THE INTRODUCTION  
OF NEW PROCEDURES 

In concert with the assessment of past experiences and evaluation of innovative ideas for reducing 
costs and increasing the science cost-effectiveness of extended missions, the committee discussed the 
question of increased risk associated with such approaches. It usually costs money upfront to develop new 
procedures that could eventually reduce costs, but the upfront funding usually is not available during the 
extended phase of a mission, unless it is diverted from science or essential operations activity. Keeping 
procedures as simple as possible in the prime mission, which projects should do to the extent possible, 
may be the best way to control costs and limit risks in extended missions. Increased risk from any new 
procedure is unavoidable, but may be acceptable in some cases. For example, if the alternative is to 
terminate a mission, then substantially increased risk may be acceptable. Also, risk to the science data is 
less critical than risk of catastrophic failure of the mission. As is commonly done by project management, 
all such risks are best identified, described, and carefully evaluated in order to avoid making decisions 
that could keep a spacecraft operating but drain it of scientific productivity. 

 
Finding: Investment in the development of standard procedures and templates, with complexity 
as limited as possible, for use during the prime phase may be the best way to control operations 
costs and limit the risks from introducing new procedures specifically developed for extended 
operations. 
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DETERMINING THE LIFETIME COST OF SCIENCE MISSIONS 

NASA’s present approach is to develop prime mission hardware specifications (e.g., lifetime) 
such that there will be a high level of confidence in the mission’s ability to meet prime mission 
requirements. This approach is both understandable and appropriate and has served the agency well. 
Furthermore, it implies that there is a distinct probability that most missions will survive in good enough 
shape to propose an extension. Even so, NASA defers formal requests for extended mission operations 
funding until the approach of the prime mission completion along with achievement of the stated science 
objectives. This practice probably traces back to the early days of spacecraft development when there was 
lower confidence that spacecraft and science instrument operations would even reach, let alone exceed, 
desired mission lifetimes. Some critics have noted that this approach produces life-cycle cost estimates 
for missions that are lower than they would be if budgets for extended mission operations were included 
from the start. Moreover, deferring formal requests for mission extensions may encourage some skeptics 
to question the merits of such extensions. On the other hand, NASA’s 5-year budget projections for the 
SMD do carry funding for extending missions on a division-by-division basis (sometimes by individual 
missions and sometimes as an aggregate number), so the planned expenditures are included in NASA’s 
budget projections.  
 The committee debated this question and concluded that the current NASA approach is very 
reasonable. Spacecraft and science instruments are designed and tested for specific lifetimes with 
corresponding requirements (and associated costs) for component and subsystem reliability. The lifetime 
design requirements also include margins, which increase the probability that the mission will meet its 
design lifetime, but do not guarantee how much longer it will continue working beyond its prime phase. 
After the design lifetime is reached, nobody expects the spacecraft or instruments to immediately stop 
working, just as nobody expects a household appliance to break the day after its warranty expires, but 
there is an understanding that degradation in function may occur. The committee also discussed the merits 
for NASA to further describe this philosophy in its own policy documents as a means to better 
communicate both internally and externally its intent to extend the operations of missions as long as they 
continue to return useful data and the resources needed to do so fit within their overarching budget 
constraints. 

In addition, the prime phase of a mission is not only defined by the hardware lifetimes, but by the 
science goals that are to be achieved during that time. If NASA were to define a longer lifetime for a 
mission from the outset, development, integration, and testing costs would increase, while NASA and the 
science team might also have to expand the science goals corresponding to a longer prime mission. One 
of the benefits of an approach that keeps the prime phase separate from the extended phase is that it 
enables NASA and the science teams to apply knowledge gained during the prime mission to develop 
expanded, or even totally new, goals for the extended mission. This insight and the new goals cannot be 
predicted far in advance, so the current approach is a good method of tapping into new knowledge and 
applying it to an already flying mission. 
 

Finding: NASA’s current approach to establishing requirements and designs for prime phase and 
budgeting for extended missions has many positive attributes and provides a very high return on 
investment. 
 
Recommendation: NASA should continue anticipating that missions are likely to be 
extended and identify funding for extended missions in the longer-term budget projections. 
 
Recommendation: NASA’s Science Mission Directorate (SMD) policy documents should 
formally articulate the intent to maximize science return by operating spacecraft beyond 
their prime mission, provided that the spacecraft are capable of producing valuable science 
data and funding can be identified within the SMD budget. 
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CONCLUSION 

The committee is very supportive of the current NASA approach to mission design, which 
provides a high probability of achieving prime mission objectives while also allowing a reasonable 
likelihood that an extended phase with high science return will be achievable. As stated earlier, extended 
missions enable new science, provide for data continuity, and enable long baseline studies—all at very 
modest incremental cost. The committee has identified a number of good/best practices for missions to 
adopt in order to limit increased risk and prepare to operate extended missions under likely reduced 
budgets. Various cost-saving approaches were presented to the committee, and a number of positive 
attributes were identified, although no global solutions were found, given the distinct aspects of the 
various missions. The committee is supportive of the acceptance of increased risk during the extended 
phase of most missions while noting that the national interests or needs aspects of Earth science missions 
(and possibly some Heliophysics missions as well) establish different risk acceptance levels. The 
committee also notes the importance of considering operations trades along with science impacts when 
budget reductions are required and notes the importance of providing roughly constant funding for highly 
performing missions after the first two Senior Reviews. 
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A 
 

Statement of Task 
 
 

The NRC will appoint an ad hoc committee to conduct an assessment of the scientific value of 
extended missions in the overall program of NASA’s Science Mission Directorate (SMD). The 
committee’s report will provide recommended guidelines for future NASA decision-making about such 
mission extensions. In conducting this study, the committee could address the following questions: 
 

1. Historically, what have been the scientific benefits of mission extensions? How important are 
these benefits (for example, benefits that might only accrue during the extended mission phase but not 
earlier)? 

2. What is the current SMD Senior Review process for extending missions--for example, how are 
reviews chartered and conducted, by whom, and using what criteria? What should be division dependent 
and what should be uniform across the Directorate? 

3. The NASA Authorization Act of 2005 requires biennial Senior Reviews for each mission 
extension. Is this biennial time period optimal for all divisions? Would a longer or shorter time period 
between reviews be advantageous in some cases? 

4. Does the balance currently struck between starting new missions and extending operating 
missions provide the best science return within NASA’s budget? That is, how much of an acceleration of 
new mission initiation could realistically be achieved by reallocating resources from mission extensions 
to new programs, compared to the corresponding scientific loss from terminated or diminished mission 
extensions? 

5. Are there innovative cost reduction approaches that could increase the science cost-
effectiveness of extended missions? Are there any general principles that might be applied across the 
board or to all of the missions for an individual science theme or a particular class? Are there alternative 
mission management approaches (e.g., transfer to an outside technical or educational institution for 
training or other purposes) that could reduce mission costs during extended operations and continue to 
serve SMD’s science objectives? 
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B 
 

Scientific Discoveries of Lunar Reconnaissance Orbiter  
and Opportunity Rover During Extended Phase 

LUNAR RECONNAISSANCE ORBITER 

The Lunar Reconnaissance Orbiter (LRO) has been orbiting the Moon for nearly 7 years. 
Originally in a quasi-circular 50-km orbit, after 18 months of operation LRO was moved to a ~30-km × 
~180-km orbit to conserve fuel; all extended missions observations have been from the fuel-saving 
elliptical orbit. LRO includes seven science experiments; all remain healthy, except that the Miniature 
Radar Frequency (Mini-RF) transmitter ceased to function in December 2010 but still produces useful 
measurements as a receiver in a bi-static configuration (Earth-based assets transmit). An important legacy 
of the LRO mission is the vast amount of data made available to the scientific community, which is 
expected to be >900 TB by the end of 2018. This legacy data set will be used for decades of lunar 
exploration and science.  

A few of the key LRO science results from the extended mission are summarized below. More 
than 220 new resolved impact craters were discovered as of March 2016 (Figure B.1), having diameters 
of 1.4 to 43 m. The number of new craters shows that the size frequency distribution is steeper than 
expected based on models commonly used to date surfaces. In addition to the craters themselves, >45,000 
albedo marks (splotches) are observed that provide information regarding secondary cratering processes 
(Robinson et al., 2015).  

The high-resolution LROC images also revealed numerous small-scale tectonic features with 
pristine morphologies, indicating that they are likely still forming, most likely due to cooling of the 
interior. The orientation of these scarps is not random but rather consistent with a pattern expected from 
stresses introduced from solid body tides with Earth (Watters et al., 2015). The Lunar Orbiter Laser 
Altimeter (LOLA) detected enhanced reflectivity @1064 nm in permanently shadowed regions at both 
the north and south poles (Lucey et al., 2014). This data, together with other data such as from the Lyman 
Alpha Mapping Project (LAMP) and temperatures measured by Lunar Diviner Radiometer (Hayne et al., 
2015), collectively suggest that a micron-thick layer of water ice is present in these regions. The polar 
hydrogen distribution at both the north and south poles is asymmetric and mirrored, suggesting that true 
polar wander has occurred (Siegler et al., 2016). Although most volcanism on the Moon appears to have 
ended 2 to 3 Gyr ago, observations by LROC suggest late stage activity persisted until <100 Myr (Braden 
et al., 2014). The abundance of rocks in ejecta blankets is well correlated with the age of the crater from 
~100 kyr to ~1.5 Gyr (Ghent et al., 2014), establishing a new “lithochronology” technique. The Mini-RF 
instrument is operated in concert with the Arecibo Observatory to collect bistatic radar data of the lunar 
nearside from 2012 to 2015; the response for the floor of the south-polar permanent shadowed region in 
Cabeus crater is consistent with the presence of blocky, near-surface deposits of water ice (Patterson et 
al., 2016).  
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C 
 

NASA Science Mission Directorate Budgets by Division 
Fiscal Year 2016 

 
 

Data for Figures C.1 through C.4 was provided by NASA to the committee. They demonstrate the 
individual budgetary breakdowns for each division. They are primarily included here to enable 
comparison of the size of development budgets versus extended science operations budgets in each 
division. Because the divisions manage and calculate their budgets in slightly different ways, it is not 
possible to make detailed budget category comparisons between the divisions. 
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D 
Extended Mission and Senior Review  

References in Decadal Surveys 
 
 

Extended missions have been mentioned in a number of decadal survey reports. However, their 
value has rarely been explicitly highlighted in these reports. 

2010 ASTRONOMY AND ASTROPHYSICS DECADAL SURVEY 

National Research Council, New Worlds, New Horizons in Astronomy and Astrophysics, The National 
Academies Press, Washington, D.C., 2010. 
 
Page 16, Wide-Field Infrared Survey Telescope (WFIRST) 

A 1.5-meter wide-field-of-view near-infrared-imaging and low-resolution- spectroscopy telescope, 
WFIRST will settle fundamental questions about the nature of dark energy, the discovery of which 
was one of the greatest achievements of U.S. telescopes in recent years. It will employ three 
distinct techniques—measurements of weak gravitational lensing, supernova distances, and baryon 
acoustic oscillations—to determine the effect of dark energy on the evolution of the universe. An 
equally important outcome will be to open up a new frontier of exoplanet studies by monitoring a 
large sample of stars in the central bulge of the Milky Way for changes in brightness due to 
microlensing by intervening solar systems. This census, combined with that made by the Kepler 
mission, will determine how common Earth-like planets are over a wide range of orbital 
parameters. It will also, in guest investigator mode, survey our galaxy and other nearby galaxies to 
answer key questions about their formation and structure, and the data it obtains will provide 
fundamental constraints on how galaxies grow. The telescope exploits the important work done by 
the joint DOE/NASA design team on the Joint Dark Energy Mission—specifically the JDEM-
Omega concept—and expands its scientific reach. WFIRST is based on mature technologies with 
technical risk that is medium low and has medium cost and schedule risk. The independent cost 
appraisal is $1.6 billion, not including the guest investigator program. As a telescope capable of 
imaging a large area of the sky, WFIRST will complement the targeted infrared observations of 
the James Webb Space Telescope. The small field of view of JWST would render it incapable of 
carrying out the prime WFIRST program of dark energy and exoplanet studies, even if it were 
used exclusively for this task. The recommended schedule has a launch data of 2020 with a 5-year 
baseline mission. An extended 10-year mission could improve the statistical results and further 
broaden the science program. The European Space Agency (ESA) is considering an M-class 
proposal, called Euclid, with related goals. Collaboration on a combined mission with the United 
States playing a leading role should be considered so long as the committee’s recommended 
science program is preserved and overall cost savings result. 

 
Page 167 

NASA holds regular senior reviews to decide which missions to terminate, and it is anticipated 
that every one of its currently orbiting space telescopes, including Hubble (which needs an 
expensive de-orbiting mission), will cease operations before the end of the decade. SOFIA, which 
has operations costs of $70 million per year, will be subject to a senior review after 5 years of 
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operations. Thus, with the possible exception of JWST and SOFIA, none of the missions operating 
or started today are expected to be operational at the end of the decade. 

 
Page 174, National Aeronautics and Space Administration 

In the course of formulating recommendations that include large, medium, and small missions, as 
well as targeted augmentations to some of the core sup- porting activities, the committee 
considered broader issues of balance between a range of elements across the NASA program: 
between larger and smaller missions; between NASA-led and international-partner-led missions; 
between university-led and NASA-center-led missions; between mission-enabling and mission-
supporting activities (technology development, Suborbital program, theory, ground-based 
observing) and the missions themselves; between mission construction/operation and data 
archiving and analysis; and between extended mission support for operating missions versus 
funding of new missions. During its deliberations the committee attended to the general principle 
of balance in developing its recommended prioritization of projects within the NASA 
Astrophysics Division program during the coming decade. 

 
Page 207, Priority 1 (Large, Space). Wide-Field Infrared Survey Telescope (WFIRST) 

In a 5-year baseline mission, its observations would emphasize the planet census and dark energy 
measurements, while accommodating a competed general investigator program for additional 
surveys that would exploit WFIRST’s unique capabilities using the same observation modes. The 
powerful astronomical survey data collected during all of the large-area surveys would be utilized 
to address a broader range of science through a funded investigator program. An extended 
mission, subject to the usual senior review process, could both improve the statistical results for 
the main science drivers and broaden the general investigator program. 

 
Page 225, Priority 1 (Large, Ground). Large Synoptic Survey Telescope (LSST) 

The technical risk of LSST as determined by the survey’s cost appraisal and technical evaluation 
(CATE) process was rated as medium low. The committee did identify additional risk with 
establishing data management and archiving software environments adequate to achieving the 
science goals and engaging the astronomical community. The appraised construction cost is $465 
million with a time to completion of 112 months. The committee recommends that LSST be 
started as soon as possible, with, as proposed by the project, two-thirds of the construction costs 
borne by NSF through its MREFC line and a quarter by DOE using Major Item of Equipment 
(MIE) funds. The estimated operations cost is $42 million per year over its 10-year lifetime, of 
which roughly $28 million is proposed to be borne by the U.S. agencies—the committee 
recommends two-thirds of the federal share of operations costs be borne by NSF and one-third by 
DOE. It is recommended that any extended mission should only happen following a successful 
senior review. By its very nature LSST will stimulate a large number of follow-up studies, 
especially of a spectroscopic character. The planning and administration of an optimized plan for 
follow-up studies within the public-private optical-infrared system could be carried out by the 
National Optical Astronomy Observatory. 

2011 PLANETARY SCIENCE DECADAL SURVEY 

National Research Council, Vision and Voyages  for Planetary Science in the Decade 2013- 2022, The 
National Academies Press, Washington, D.C., 2011. 
 
Page 12, NASA ACTIVITIES 

Continue missions currently in flight, subject to approval obtained through the appropriate senior 
review process. Ensure a level of funding that is adequate for successful operation, analysis of 
data, and publication of the results of these missions, and for extended missions that afford rich 
new science return. 
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Page 14, Recommended Program of Missions 

Within the category of small missions are three elements of particular interest: the Discovery 
program, extended missions for ongoing projects, and Missions of Opportunity. 
 
Mission extensions can be significant and highly productive, and may also enhance missions that 
undergo changes in scope because of unpredictable events. In some cases, particularly the “re-
purposing” of operating spacecraft, fundamentally new science can be enabled. These mission 
extensions, which require their own funding arrangements, can be treated as independent, small-
class missions. The committee supports NASA’s current senior review process for deciding the 
scientific merits of a proposed mission extension. The committee recommends that early planning 
be done to provide adequate funding of mission extensions, particularly for flagship missions and 
missions with international partners. 

 
Pages 27 and  67, International Cooperation 

1. Scientific support through peer review that affirms the scientific integrity, value, 
requirements, and benefits of a cooperative mission; 

2. A historical foundation built on an existing international community, partnership, and 
shared scientific experiences; 

3. Shared objectives that incorporate the interests of scientists, engineers, and managers in 
common and communicated goals; 

4. Clearly defined responsibilities and roles for cooperative partners, including scientists, 
engineers, and mission managers; 

5. An agreed-upon process for data calibration, validation, access, and distribution; 
6. A sense of partnership recognizing the unique contributions of each participant; 
7. Beneficial characteristics of cooperation; and 
8. Recognition of the importance of reviews for cooperative activities in the conceptual, 

developmental, active, or extended mission phases—particularly for foreseen and upcoming large 
missions. 

 
Page 35, Non-Mars Mission Priorities in 2003, Small 

The 2003 decadal survey identified two small-class initiatives. They were, in priority order: 
 

1. Discovery program. The 2003 survey recommended that the Discovery line of 
innovative, principal- investigator-led missions should continue and that a new one should be 
launched approximately every 18 months (Figure 1.3). This mission line has continued, but the 
flight rate has not matched the 2003 decadal survey’s expectations. 

2. Cassini extended mission. The 2003 decadal survey recommended that the Cassini 
Saturn orbiter mission be extended beyond its 4-year nominal lifetime. Operation of this highly 
successful and scientifically productive spacecraft (Figures 1.4 and 1.5) now extends through 
2017. 

 
Page 103, Chiron Orbiter 

Given the growing number of known Centaurs and KBOs, the committee concluded that it is 
scientifically desirable that missions directed to the outer solar system take advantage of 
opportunities to fly by such objects (at ranges less than 10,000 km) en route to their ultimate 
targets. During the next decade there will be a growing desire to investigate some large trans-
Neptune objects beyond the orbit of Pluto. The New Horizons mission already en route to Pluto 
(Figure 4.4) has the potential to fly by a small KBO. This extended mission opportunity will be a 
first chance for a close-up view of this class of object and should not be missed if a suitable target 
is available. 
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Page 123, Constrain Ancient Climates on Venus and Search for Clues into Early Terrestrial Planet 
Environments So As to Understand the Initial Conditions and Long-Term Fate of Earth’s Climate 

Data from the ASPERA instrument on Venus Express suggest provisionally that hydrogen escape 
rates are an order of magnitude slower than previously assumed, implying that the hydrogen in 
Venus’s atmosphere has an average residence time of some 1 billion years.25 This result, if 
confirmed by further observations during an extended Venus Express mission, has important 
implications for the history of water and the current rate of outgassing on Venus. Another 
significant discovery is that Venus’s atmosphere is losing unexpectedly large quantities of oxygen 
to deep space by way of nonthermal processes. This finding calls into question the long-standing 
assumption that a massive escape of hydrogen from Venus’s atmosphere must have left the 
atmosphere and surface highly oxidized. 

 
Page 257, UNDERLYING PROGRAMMATIC REQUIREMENTS 

The individual flight projects for the coming decade must be considered within the context of the 
broader program of planetary exploration. The goal is to develop a fully integrated strategy of 
flight projects, technology development, and supporting research that maximizes the value of 
scientific knowledge gained over the decade. All of the recommendations in this chapter are made 
under the assumption that the following basic programmatic requirements are fully funded: 

 Continue missions currently in flight, subject to approval obtained through the 
appropriate senior review process. These missions include the Cassini mission to the 
Saturn system, several ongoing Mars missions, the New Horizons mission to Pluto, 
ongoing Discovery missions, and others. Ensure a level of funding that is adequate for 
successful operation, analysis of data, and publication of the results of these missions, 
and for extended missions that afford rich new science return. 

 
Page 264, Extended Missions for Ongoing Projects 

Mission extensions can be significant and highly productive, and may also enhance missions that 
undergo changes in scope because of unpredictable events or opportunities. The Cassini and Mars 
Exploration Rover extensions are examples of the former, and the “re-purposing” of missions such 
as Stardust (NExT) and Deep Impact (EPOXI) are examples of the latter. In some cases, 
particularly the re-purposing of operating spacecraft, fundamentally new science can be enabled. 
These mission extensions, which require their own funding arrangements, can be treated as 
independent, small-class missions. The committee supports NASA’s current senior review process 
for deciding the scientific merits of a proposed mission extension. The committee recommends 
that early planning be done to provide adequate funding of mission extensions, particularly for 
flagship missions and missions with international partners. 

2007 EARTH SCIENCE DECADAL SURVEY 

National Research Council, Earth Science and Applications from Space: National Imperatives for the 
Next Decade and Beyond, The National Academies Press, Washington, D.C., 2007. 
 
Page xiv 

A related issue concerns the process for extension of a NASA-developed Earth science mission 
that has accomplished its initial objectives or exceeded its design life. NASA decisions on 
extension of operations for astronomy, space science, and planetary exploration are based on an 
analysis of the incremental cost versus anticipated science benefits. Historically, NASA has 
viewed extended-phase operations for Earth science missions as operational and therefore the 
purview of NOAA. However, the compelling need for measurements in support of human health 
and safety and for documenting, forecasting, and mitigating changes on Earth creates a continuum 
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between science and applications—illustrating again the need for multiple agencies to be 
intimately involved in the development of Earth science and applications from space 

 
Page 13 

The elimination from NPOESS of requirements for climate research-related measurements is only 
the most recent example of the nation’s failure to sustain critical measurements. The committee 
notes that despite NASA’s involvement in climate research and its extensive development of 
measurement technology to make climate-quality measurements, the agency has no requirement 
for extended measurement missions, except for ozone measurements, which are explicitly 
mandated by Congress. The committee endorses the recommendation of a 2006 National Research 
Council report that stated, “NASA/SMD [Science Mission Directorate] should develop a science 
strategy for obtaining long-term, continuous, stable observations of the Earth system that are 
distinct from observations to meet requirements by NOAA in support of numerical weather 
prediction.” 

2013 HELIOPHYSICS DECADAL SURVEY 

National Research Council, Solar and Space Physics: A Science for a Technological Society, The 
National Academies Press, Washington, D.C., 2013. 
 
Page 240, Heliophysics Systems Observatory 

In the area of comparative magnetospheres, Juno will enter its prime mission phase when it arrives 
at Jupiter in 2016, while Cassini at Saturn is approved for a final mission extension to 2017, and 
MESSENGER will complete its prime mission early in the decade. Past and current missions 
continue to provide deep insights into general solar wind magnetosphere interactions. For 
example, Ganymede’s Alfvén wings have led to modern theories of Earth’s own polar cap 
potential saturation mechanism; Saturn’s explosive energy releases have much in common with 
substorm injections at Earth; and Jupiter’s interchange motions enabling convection under Io’s 
mass loading have led to similar theories pertaining to inward penetration of fast reconnection 
flows. As is the case for Earth-orbiting satellites, extended missions for planetary missions that 
continue to return valuable science data are strongly encouraged. 

 
Page 307, L5 Mission Concept 

Two science phases are envisioned: drift to L5 at about 38° per year with continuous collection of 
science data and orbit around L5, 45°-90° from the Sun-Earth line. A long extended mission is 
possible. 

 
Page 313, Heliophysics Systems Observatory and MO&DA Support 

Resource allocation among extended HSO missions is determined through the senior-review 
process, which evaluates future scientific priorities for each mission. The present 5-year budget 
requests show flat or declining HSO funding. In addition to supporting existing HSO missions, the 
budget must accommodate new missions, such as RBSP (renamed the Van Allen Probes) and 
SDO, that finish their prime mission in or before FY 2015; this will inevitably lead to forced 
termination of or severe cuts in current HSO missions. As a consequence, key systems-science 
objectives are endangered, and essential legacy data sets may be foreshortened at a time when 
solar activity is apparently evolving in unexpected ways. Multipoint observations throughout the 
heliosphere and from the Sun to geospace regions need to be maintained to enable systems 
science. The SHP panel assigns high priority to augmenting MO&DA support by annual 
inflationary increases plus $5 million to $10 million per year to accommodate new missions so 
that senior-review decisions can be prudently based on strategic evaluations of existing and 
emerging assets. 
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JPL in a variety of technical, management, and scientific roles. Previously, she was a member of the Mars 
Viking Mission Lander Imaging Team and was scientific assistant to the JPL chief scientist. Ms. Vane 
received the NASA Individual Award for Exceptional Achievement as deputy principal investigator and 
project manager for the CloudSat Mission, and she has received several Group Achievement awards. She 
earned her B.S. in physics from the University of Colorado. 

STAFF 

DWAYNE A. DAY, Study Director, a senior program officer for the Aeronautics and Space Engineering 
Board (ASEB), has a Ph.D. in political science from the George Washington University. Dr. Day joined 
the Academies as a program officer for the Space Studies Board (SSB). He served as an investigator for 
the Columbia Accident Investigation Board in 2003, was on the staff of the Congressional Budget Office, 
and worked for the Space Policy Institute at the George Washington University. He has also performed 
consulting for the Science and Technology Policy Institute of the Institute for Defense Analysis, and the 
U.S. Air Force. He is the author of Lightning Rod, A History of the Air Force Chief Scientist, and editor of 
several books including a history of the CORONA reconnaissance satellite program. He has held 
Guggenheim and Verville fellowships at the National Air and Space Museum, and was an associate editor 
of the German spaceflight magazine Raumfahrt Concrete, in addition to writing for such publications as 
Novosti Kosmonavtiki (Russia), Spaceflight, and Space Chronicle (United Kingdom), and the Washington 
Post. He has served as study director for over a dozen Academies’ reports, including: 3-D Printing in 
Space (2013), NASA’s Strategic Direction and the Need for a National Consensus (2012), Vision and 
Voyages for Planetary Science in the Decade 2013-2022 (2011), Preparing for the High Frontier-The 
Role and Training of NASA Astronauts in the Post-Space Shuttle Era (2011), Defending Planet Earth: 
Near-Earth Object Surveys and Hazard Mitigation Strategies (2010), Grading NASA’s Solar System 
Exploration Program: A Midterm Review (2008), and Opening New Frontiers in Space: Choices for the 
Next New Frontiers Announcement of Opportunity (2008). 
 
ANESIA WILKS joined the SSB as a program assistant in 2013. Ms. Wilks brings experience working in 
the National Academies conference management office as well as other administrative positions in the 
D.C. metropolitan area. She has a B.A. in psychology, magna cum laude, from Trinity University in 
Washington, D.C. 
 
KATIE DAUD is a research associate for the SSB and the ASEB. Previously, she worked at the 
Smithsonian National Air and Space Museum’s Center for Earth and Planetary Studies as a planetary 
scientist. Ms. Daud was a triple major at Bloomsburg University, receiving a B.S. in planetary science 
and Earth science and a B.A. in political science.  
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MICHAEL MOLONEY is the director for Space and Aeronautics at the SSB and the Aeronautics and 
Space Engineering Board (ASEB) of the Academies. Since joining the ASEB/SSB, Dr. Moloney has 
overseen the production of more than 40 reports, including four decadal surveys—in astronomy and 
astrophysics, planetary science, life and microgravity science, and solar and space physics—a review of 
the goals and direction of the U.S. human exploration program, a prioritization of NASA space 
technology roadmaps, as well as reports on issues such as NASA’s Strategic Direction, orbital debris, the 
future of NASA’s astronaut corps, and NASA’s flight research program. Before joining the SSB and 
ASEB in 2010, Dr. Moloney was associate director of the Board on Physics and Astronomy (BPA) and 
study director for the decadal survey for astronomy and astrophysics (Astro2010). Since joining the 
Academies in 2001, Dr. Moloney has served as a study director at the National Materials Advisory Board, 
the BPA, the Board on Manufacturing and Engineering Design, and the Center for Economic, 
Governance, and International Studies. Dr. Moloney has served as study director or senior staff for a 
series of reports on subject matters as varied as quantum physics, nanotechnology, cosmology, the 
operation of the nation’s helium reserve, new anti-counterfeiting technologies for currency, corrosion 
science, and nuclear fusion. In addition to his professional experience at the National Academies, Dr. 
Moloney has more than 7 years’ experience as a foreign-service officer for the Irish government—
including serving at the Irish Embassy in Washington and the Irish Mission to the United Nations in New 
York. A physicist, Dr. Moloney did his Ph.D. work at Trinity College Dublin in Ireland. He received his 
undergraduate degree in experimental physics at University College Dublin, where he was awarded the 
Nevin Medal for Physics. 
 
NATHAN BOLL served as the 2016 Christine Mirzayan Science and Technology Policy Graduate 
Fellow at the Space Studies Board. Nathan is a graduate fellow at the Space Policy Institute of George 
Washington University where he is completing an M.A. in international science and technology policy at 
the Elliott School of International Affairs. His current focus is on building international and 
intergovernmental cooperation toward the exploration and development of outer space. Nathan holds an 
M.S. in space science and a graduate certificate in science, technology and public policy from the 
University of Michigan, as well as a B.S. in mathematics from the University of Montana Western. His 
research has included environmental analysis of Venus and Mars, and the development of the CYGNSS 
satellite constellation. Nathan has recently served in various divisions of NASA, including the Office of 
International and Interagency Relations and the Office of Education Infrastructure Division at NASA 
Headquarters, the NASA Space Academy and the Multidisciplinary Aeronautics Research Team Initiative 
programs at the Glenn Research Center, and the Planetary Science Division of the Jet Propulsion 
Laboratory.  
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F 
 

Acronyms 
 
 
ACE Advanced Composition Explorer 
ACRIMSAT Active Cavity Radiometer Irradiance Monitor Satellite 
ACS Advanced Camera for Surveys 
AIM Aeronomy of Ice in the Mesosphere 
APL Johns Hopkins Applied Physics Laboratory 
ARTEMIS Acceleration, Reconnection, Turbulence and Electrodynamics of the  
 Moon’s Interaction with the Sun 
ASD Astrophysics Division 
ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer 
 
CALIPSO Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation 
Caltech California Institute of Technology 
CHIPS Cosmic Hot Interstellar Plasma Spectrometer 
CINDI Coupled Ion Neutral Dynamic Investigation 
CO Carbon Monoxide 
COS Cosmic Origins Spectrograph 
COSTAR Corrective Optics Space Telescope Axial Replacement 
CXC Chandra X-Ray Center 
 
DSN Deep Space Network 
 
EO-1 Earth Observing-One Mission 
EOS Earth Observation System 
EPOXI Extrasolar Planet Observation and Deep Impact Extended Investigation 
ERBE Earth Radiation Budget Experiment 
ERBS Earth Radiation Budget Satellite 
ESA European Space Agency 
ESD Earth Science Division 
EUVE Extreme Ultraviolet Explorer 
 
FAST Fast Auroral Snapshot Explorer 
FGS Fine Guidance Sensors 
FOC Faint Object Camera 
FOS Faint Object Spectrograph 
FUSE Far Ultraviolet Spectroscopic Explorer 
FY Fiscal Year 
 
GALEX Galaxy Evolution Explorer 
Geotail Geomagnetic Tail Lab 
GHRS Goddard High Resolution Spectrograph 
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GPS Science Global Positioning System Science 
GRACE Gravity Recovery and Climate Experiment 
GRACE-FO Gravity Recovery and Climate Experiment Follow-On 
GRAIL Gravity Recovery and Interior Laboratory 
GSFC Goddard Space Flight Center 
 
HD Heliophysics Division 
HiRISE High Resolution Imaging Science Experiment 
HSO Heliophysics System Observatory 
HSP High Speed Photometer 
HST Hubble Space Telescope 
 
IBEX Interstellar Boundary Explorer 
ICE International Cometary Explorer 
ICESat Ice, Cloud, and Lade Elevation Satellite 
IMAGE Imager for Magnetopause-to-Aurora Global Exploration 
INTEGRAL International Gamma-Ray Astrophysics Laboratory 
IRIS Interface Region Imaging Spectrograph 
ISEE-3 International Earth-Sun Explorer-3 
IUE International Ultraviolet Explorer 
 
JPL Jet Propulsion Laboratory 
JWST James Webb Space Telescope 
 
LAGEOS Laser Geodynamics Satellites 
LRO Lunar Reconnaissance Orbiter 
 
MAVEN Mars Atmosphere and Volatile Evolution 
MER Mars Exploration Rover 
MESSENGER Mercury Surface, Space Environment, Geochemistry and Ranging 
MGS Mars Global Surveyor 
MIDEX Medium-Class Explorers 
MISR Multi-angle Imaging Spectroradiometer 
MIT Massachusetts Institute of Technology 
MLS Microwave Limb Sounder 
MMS Magnetospheric Multiscale 
MODIS Moderate Resolution Imaging Spectroradiometer 
MOPITT Measurement of Pollution in the Troposphere 
MRO Mars Reconnaissance Orbiter 
MSL Mars Science Laboratory 
 
NASA National Aeronautics and Space Administration 
NEN Near Earth Network 
NEO Near Earth Object 
NEOWISE Near-Earth Object Wide-field Infrared Survey Explorer 
NICMOS Near Infrared Camera and Multi-Object Spectrometer 
NOAA National Oceanic and Atmospheric Administration 
NPR NASA Procedural Requirement 
NRC National Research Council 
NuSTAR Nuclear Spectroscopic Telescope Array 
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O3 Ozone 
OMI Ozone Monitoring Instrument 
OSTM Ocean Surface Topography Mission 
 
PI Principle Investigator 
PPBE Planning, Programming, Budged and Execution 
PSD Planetary Science Division 
 
QuikSCAT Quick Scatterometer 
 
R&A Research and Analysis 
RapidScat Rapid Scatterometer 
RHESSI Reuven Ramaty High Energy Solar Spectroscopic Imager 
RMD Resources Management Division 
ROSES Research Opportunities in Space and Earth Sciences 
RSL Recurring Slope Lineae 
RXTE Rossi X-ray Timing Explorer 
 
SAGE Stratospheric Aerosol and Gas Experiment 
SAMPEX Solar, Anomalous, and Magnetospheric Particle Explorer 
SDO Solar Dynamics Observatory 
SM Servicing Mission 
SMD Science Mission Directorate 
SMEX Small Explorer 
SOHO Solar and Heliospheric Observatory 
SORCE Solar Radiation and Climate Experiment 
SSR Steady State Recorder 
ST Space Telescope 
Stardust-NExT Stardust New Exploration of Tempel 1 
STEREO Solar Terrestrial Relations Observatory 
STIS Space Telescope Imaging Spectrograph 
Suomi NPP Suomi National Polar orbiting Partnership, formerly the  
 National Polar-orbiting Operational Environmental Satellite System  
 (NPOESS) Preparatory Project or NPP 
 
TDE Tidal Disruption Event 
THEMIS Time History of Events and Macroscale Interactions during Substorms 
TIM Total Irradiance Monitor 
TIMED Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics 
TOMS Total Ozone Mapping  
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