Technology Development Challenges to Meet TRL Goal

Making the technology rad hard
- Existing technology developed for short (< 1 yr) CubeSat missions in LEO
- For HPD missions, a radiation tolerant version may be needed
- For most components, rad tolerant parts can be found
 - One exception: Time-to-Digital Converter (TDC) that performs the precision time-stamping
 - Solution: The PSSL, with STMD support, has been developing TDCs and related functionalities in software on rad tolerant FPGAs

Precision beam pointing and acquisition still under development, currently TRL 4

Technology Description, Current Performance Metrics, and Performance Goals

- Compact, low power precision time transfer via exchange of nanosecond IR laser pulses
- 100 ps (3 cm) measured time-transfer accuracy
- Chip Scale Atomic Clock: 20 ns drift after 10^4 s
- Ground-to-space or space-to-space links
- Rx: < 5 W peak
 Tx: < 15 W peak
- Volume: < 2U
 Mass: < 2 kg
- Ground-to-LEO demo of OPTI: July 2018
- LEO-to-LEO demo with related tech: 2020

Current TRL

- TRL 4
- TRL By May 2021
- TRL 6

Potential HPD Science Application (Optional)

- Synchronization of measurements made by swarms or constellations of microsatellites or CubeSats
- Example:
 - Particle detectors on a number of small satellites orbiting the Sun
 - Synchronization of the constellation to ~1 ns → relative arrival times of particles at each S/C + relative range between S/C
 - Enables 4D mapping (X, Y, Z, t) of solar activity

Contact Information

John W. Conklin
Director, Precision Space Systems Lab
Assistant Professor of Mechanical and Aerospace Engineering
University of Florida
jwconklin@ufl.edu
1-352-392-0614

Additional Comments

- Additional information on two CubeSat tech demonstration missions (CHOMPTT and CLICK) provided in back-up charts

Assumption: Technology required to be at TRL 5 by May 2021
CHOMPTT CubeSat Mission Concept

Clock discrepancy:

\[\chi = t_{1}^{\text{space}} - \frac{t_{2}^{\text{ground}} + t_{0}^{\text{ground}}}{2} + \Delta t \]

Launch: July 2018
500 km circle, 85 deg
NASA ELaNa XIX - Rocketlab

[J. Anderson, et al. JASR 2017]
OPTI Flight Payload Assembly

Channel A (back)

Six, 1 cm retro array

Channel B (front)

808 nm laser beacons (4×0.5 W)

Supervisor (payload controller)
CHOMPTT 3U Spacecraft

- **PSSSL**
 - Nadir Sun Sensor
 - Pumpkin Large Aperture Plate

- **OPTI 1U Payload**

- **3U Solar Panel Mounting Plane**

- **GOMSpace P110**
 - 1U Solar Panels (x8)

- **1.5U NODes-derived BUS**
 - NODes-derived TASC
 - 1U Solar Panels (x5)

- **Pumpkin 3U Solid Chassis w/ Custom Cutouts**

- **Baby Burnwire PCBs**

- **Payload Data & Power cable**

- **NODes adapter Plate**
CubeSat Laser Infrared CrosslinK (CLICK)

Two 6U, 15 kg each, P/L < 2 kg
15 W Ave, 30 W peak
Launch in 2020

UF PSSL time-transfer hardware:
• FPGA modulator + CSAC
• TDC-based photoreciever
NASA ARC-led mission, S/C bus
MIT: Payload PI, Optical font-end,
pointing/tracking, laser comm mod/demod

>10 Mbps IR link,
~10 cm ranging, clock synch