Aeronomy of Ice in the Mesosphere (AIM)

Science Objective:
- Quantify the connection between Polar Mesospheric Clouds (PMCs) and the meteorology of the polar mesosphere
- Study the long-term change in the mesosphere and its relationship to global change

Science Data
- 1.3 Gbits/day science

SMall EXplorers (SMEX)

Cost: $140M including launch vehicle
- Class C

Mission: 2 year nominal, still flying

Launch: April 2007

Orbit: 600 km polar orbit
- Noon/noon sun synchronous

Observatory Summary

<table>
<thead>
<tr>
<th>Mass</th>
<th>195 kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>216 W</td>
</tr>
<tr>
<td>Attitude</td>
<td>3-axis stabilized</td>
</tr>
</tbody>
</table>

Hampton University

PI: James Russell III

University of Alaska

Co-I: Scott Bailey

Laboratory for Atmospheric and Space Physics (LASP), University of Colorado

Project Manager: Michael McGrath

(image credit: OSC)
AIM Mission Concept

SMEX: PI-led free-flyer mission
• PI: James Russell III, Hampton University

• Project Management: LASP, University of Colorado Boulder

Accommodation:
• Spacecraft, LEOStar-2: Orbital Sciences Corporation (now Northrup Grumman)
• Launch: Pegasus-XL

Science Payload: 3 instruments
- Solar Occultation For Ice Experiment (SOFIE): SDL, Utah State University
- Cloud Imaging and Particle Size (CIPS): LASP
- Cosmic Dust Experiment (CDE): LASP
Global-scale Observations of the Limb and Disk

Explorer Mission of Opportunity (MOO)

Contract Value: $63.5M
- Class C, Category 3 per NPR 7120.5E

Mission: 2 years ongoing
- Hosted on SES-14 GEO commercial satellite

Launch: January 2018
- Hosted on SES-14 GEO commercial satellite

<table>
<thead>
<tr>
<th>Year</th>
<th>Phase</th>
<th>Selection</th>
<th>SAR</th>
<th>PDR</th>
<th>CDR</th>
<th>PER</th>
<th>PSA</th>
<th>CRBR</th>
<th>Launch</th>
<th>End of Ops</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>Phase A</td>
<td>Selection</td>
<td>SAR</td>
<td>PDR</td>
<td>CDR</td>
<td>PER</td>
<td>PSA</td>
<td>CRBR</td>
<td>Launch</td>
<td>End of Ops</td>
</tr>
<tr>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
</tr>
</tbody>
</table>

Instrument Summary

- **Mass:** 37 kg
- **Power:** 72 W
- **Size:** $51 \times 55 \times 69 \text{ cm}^3$
- **Data:** 6 Mbps continuous

Study the temperature and composition structure of the thermosphere

Observations:
- Disk maps of temperature, O/N$_2$ ratio
- Limb scans (for temperature)
- Disk maps of peak electron density
- Stellar occultations

UV Imaging Spectrograph:
- Two independent, identical channels with MCP, delay line anode

Florida Space Institute (FSI) University of Central Florida (UCF)
- **PI:** Richard Eastes (now at LASP)

Laboratory for Atmospheric and Space Physics (LASP)

University of Colorado Boulder
- **Deputy PI:** William McClintock
- **Project Manager:** Rory Barrett
GOLD Mission Concept

Mission of Opportunity: PI-led mission, collaborating with SES to accommodate an instrument in Geostationary orbit on a commercial communications satellite

- Owner - Operator: SES (Luxembourg)
- Spacecraft: Airbus DS (France)
- GOLD Data Handling: SES-GS (USA)
- Instrument: LASP (USA)
- Science Operations Center: LASP (USA)
- Science Data Center: UCF (USA)
- Launch: Ariane-5 (ESA, French Guiana)

Accommodation: SES included GOLD on RFP for SES-14 mission

- SES saw this as a good mission to accommodate GOLD

Science Payload: Single instrument

- Single package for easy accommodation
- Two identical imaging spectrograph channels
 - Operate independently
- Electronics sandwiched between channels
LESSONS LEARNED
Lesson: Operations personnel are valuable contributors in development and test

• AIM: Future instrument operators were actively involved by CPT-design stage (prior to PER), participated in I&T
 - Model repeated on GOLD, working even earlier, with SES for planning
• Why it worked
 - Engineers learned from operators how to design with operations in mind
 - Operators were be better prepared when given opportunity to work side-by-side with design engineers
Lesson: An engineering model can make for a smoother flight build and help identify problems ahead of environmental test

• GOLD built a single optical channel, simple structurally but with optical layout
• EM electronics also built
• Why it worked
 - Used it to dry run alignment and calibration processes
 - Validated science measurement performance early
 - Tested flight boards with EM boards to even out schedule mismatches
 - Flight software was developed on real hardware
 - Operations tested procedures on EM electronics prior to flight model
• What could have been improved
 - Two-channel would have been nice for electronics testing
Early Science Requirements Freeze

Lesson: Concentrating efforts early to freeze science requirements prevents scope creep

• GOLD measurement requirements were set early and remained steady
 - PI & Deputy PI led the effort to gain consensus with science team on what the science requirements were
 - Traced science to instrument requirements
 - Much of this effort took place during the Concept Study

• Why it worked
 - Instrument design concept did not change from proposal
 - Allowed engineers to move forward with correct design from start of project
 - PI continued effort to maintain consensus on science requirements
Managing MOO Workload

Lesson: Single-instrument Mission of Opportunity significantly more effort than a single instrument on a SC

• MOO and Host Mission needs both need to be satisfied
 - Receives more scrutiny
 • From NASA management & Host management
 - Increased documentation required
 • NASA & Host required documentation not complete overlap
 • Tailored ERD to work with both NASA and commercial expectations
 - Increased reporting

• Required more systems engineering effort than a single instrument
 - ICD development from the ground up
 - More negotiations with SC

• Why it worked
 - All parties wanted to make the hosted payload model work
 - SES, Airbus were interested in GOLD science
Processor Development Board

Lesson: Development boards provide a boost for FPGA and FSW early development

• Prior to an engineering model GOLD built 2 development boards: reprogrammable FPGA with embedded processor
 - Allowed early and continuous incremental development and test for both FPGA and FSW

• Why it worked
 - The hardware is inexpensive
 - FSW always had access to a board so the FSW design was up and running quickly
 - Scheduled releases were aligned with arrival of EM & FM hardware for both FPGA and FSW

• Word of caution
 - Simultaneous development needs to be managed carefully so changes in FSW or FPGA does not required changes in the other
Lesson: Having an on-site project and/or instrument(s) representative(s) streamlines process

- LASP Mission SEs were on-site at Orbital during AIM I&T
 - Instrument engineers and SEs joined MSE team following delivery
- GOLD Mission SE was on-site at Airbus during SES-14 I&T

Why it worked

- Face-to-face interaction invaluable
- Management and instrument teams remained more informed of plans and potential issues
- Decisions could be made more quickly
 - Not all questions were answerable or decisions able to be made by representative, but they could provide some guidance
- Small activities can be fit in when opportunities arise if the task matches the representative’s skill set