

Requirements: Perception and Reality JPL Inputs to the AO Simplification Activity

James M. Kaufman
Competed Missions Office
Solar System Exploration Directorate
Jet Propulsion Laboratory
(818) 393-1228

Requirements Perception

- Proposal requirements contained in AOs (and supporting appendices and documents)
 - Discovery, Mars Scout, and SMEX each contain roughly 1000 individual requirements
 - Includes ancillary documents
- Many are not germane to the stated selection criteria:
 - The scientific merit of the proposed investigation
 - The scientific implementation merit and feasibility of the proposed investigation
 - The feasibility of the proposed approach for mission implementation, including cost risk (i.e., realism and reasonableness of cost)
- Plethora of requirements translates to additional work for both proposers and reviewers
- How can the requirements burden be reduced?

Align Requirements With Selection Criteria (1)

• Issue:

- Growth in the number of required proposal elements that aren't absolutely essential to evaluating the Step 1 evaluation criteria
- Non-essential information is valuable in the overall context of a mission but is not necessary to make a selection
- Requires enormous resources to prepare

• Suggested Solution(s)

- Eliminate requirements for proposal materials that are not required to make a selection based on published selection criteria
- Applies to both Step 1 and Step 2
- See next chart for Step 1 details

Align Requirements With Selection Criteria (2)

- Suggested Solution(s)
 - Eliminate non-essential Step 1 proposal requirements
 - 1. Education and Public Outreach
 - 2. Small Disadvantaged Business Plans
 - 3. Technology Transfer and Infusion
 - 4. Assembly, integration, and test flows (the approach to AI&T is appropriate, but not the details)
 - 5. Environmental test philosophy (test flow and sequence, test margins, and test durations)
 - 6. Product and mission assurance activities
 - 7. Statement of Work appendix
 - 8. Compliance with Federal Procurement Regulations for NASA PI appendix
 - 9. Summary of Proposed Contributions appendix
 - 10.Discussion of Compliance with U.S. Export Laws and Regulations appendix
 - 11.Outline of Technical Responsibilities Between U.S. and International Partners appendix (although foreign contributions should be explicitly identified)
 - 12. Communications Link Budget Design Data appendix
 - Development could be postponed until Step 2 without affecting selection
 - Items 1, 2, and 3 could be included in the "Certifications" appendix of the AO
 - Ex.: "By signing the proposal, the PI certifies that he/she is committed to implementing E/PO, SDB, and Tech Transfer plans, the details of which will be described in Step 2."
 - Items 4, 5, and 6, are important, but not essential to the evaluation criteria
 - Items 7-12 are all required appendices, and could be postponed to Step 2

Separate Selection From Procurement

- Issue:
 - AOs and proposals currently serve two separate, but related purposes
 - Selection (based on stated selection criteria)
 - Procurement (based on FARs and NASA FAR Supplement)
 - Significant proposal resources are devoted to procurement without the assurance of passing the selection gate
- Suggested Solution(s):
 - Completely separate the selection and procurement processes for both Step 1 and Step 2
 - Postpone procurement-related items until after selection:

Step 1

- "Statement of Work" appendix
- "Compliance with Federal Procurement Regulations for NASA PI" appendix
- "Summary of Proposed Contributions" appendix

Step 2

- Cost element breakdowns
- Time-phased costs of cost element breakdowns
- Submission and certification of Phase B cost or pricing data
 - Note: Certified cost and pricing data for Phase A is not required. Instead, this is required only *after* selection for Step 2.

Simplify Cost Requirements

• Issue:

 The costing landscape (constraints, guidelines, requirements, and evaluation) introduces much complexity to proposal development

• Suggested Solution(s):

- Revamp Step 1 cost requirements to be commensurate with the level of detail that is known about the mission in pre-phase A
- Express cost caps in RY\$ only
- Eliminate or simplify funding profile requirements
- Explicitly define cost terminology
- Eliminate requests for <u>optional</u> cost data (MEL, WBS, WBS dictionary, costed WBS, and BOE details)
- Replace "pseudo-WBS" cost table with time-phased, costed WBS (consistent with the NASA standard WBS)
- Eliminate the inappropriate use of S-curves
- Similar recommendations for Step 2
- Hold an "AO Cost Simplification" workshop

Reduce/Reset Reviewer Expectations

• Issue:

- Amount of detail expected in proposals increases with each AO
- Level of expected detail is incommensurate with
 - Maturity of the mission concept as then understood
 - Funding spent to date developing the proposal

• Suggested Solution(s):

- Assume that the proposer is the expert on the mission
 - Proposer gets the benefit of doubt
- Don't verify every single technical claim presented in the proposal; instead, rely on demonstrated institutional capabilities
- Focus on cost accuracy (and reserves) over cost precision
- Bin proposals into three categories:
 - (1) doable, (2) maybe doable, or (3) not doable
 - (1) and (2) are acceptable for moving on to Step 2
- Remind reviewers that:
 - Actual funding spent in Step 1 (pre-Phase A) and Step 2 (Phase A) is much less than standard Phase A guidelines (~10-15% of TMC)
 - Proposals are page limited; many details may be known but could not be included for lack of space
 - Proposers are "proposing to do", not "doing"

Introduce Repeatability to Science Evaluations

- Issue:
 - Science evaluations from AO to AO are uneven
 - Resubmissions receive inconsistent reviews
- Suggested Solution(s):
 - Increase the number of science reviewers to get better statistics
 - Further limit the number of Co-Is to increase size of the reviewer pool
 - Also use more non-US reviewers
 - ITAR
 - Allow proposers to formally claim "heritage" from a previous submission
 - Formal linkage to previous submissions to highlight inconsistent reviews
 - Increase Program Scientist and/or panel chair oversight
 - Reconcile review differences from previous submissions
 - Eliminate specious review comments

Allow for Interactions with Reviewers in Step 1

Issue:

- Proposals consist of very technical and complicated information
- Review constraints
 - Limited (technically and in numbers) reviewers
 - Page-count limitations
 - Time limitations
- Potential for overlooked or misunderstood information presented in proposals
- Can result in mistakenly attributed weaknesses
- Suggested Solution(s):
 - Develop a process to allow interactions between proposers and reviewers to validate review major weaknesses *prior* to categorization
 - Must be simple, quick, and minimize reviewer workload
 - Must limit classes of responses
 - Must not allow for introduction of new, non-clarifying material
 - Similar to peer review process for journals
 - Note: AOs currently state
 - "Proposers should be aware that, during the evaluation and selection process, NASA may request clarification of specific points in a proposal; if so, such a request from NASA and the proposer's response shall be in writing."
 - NASA should make proactive use of this clause
 - Will help avoid potential procurement issues

Additional Recommendations

- Increase page allocations
 - Allow variable allocation for Multi-element Flight Systems
- Allow flexibility in the number of foldouts
- Simplify requirements for LOEs/LOCs for Co-Is and foreign contributors
- Establish minimum qualifications for science reviewers
 - Must have relevant (e.g., target body) expertise
- Relax conflict of interest (COI) constraints for technical reviewers to acquire appropriate reviewer expertise
 - Relax institutional COIs, not individual COIs

- Overall, the AO process is a good process
 - Suits the needs of both NASA and the science community
 - Process is not broken, but the trend in AO requirements growth and inconsistencies is not encouraging
- Science traceability is the foundation of the AO process and should not be touched
- Mid-course correction is probably overdue
 - Align requirements with selection criteria
 - Separate selection from procurement
 - Simplify cost requirements
 - Reduce/reset reviewer expectations
 - Introduce repeatability to science evaluations
 - Allow for interactions with reviewers in Step 1