Science **Mission Directorate**

Technology Title:	200 W Class Plasma Propulsion System for Small Spacecraft	
Affiliation:	Busek Co. Inc., Natick, MA	

Assumptions: Technology required to be at TRL 5 by 2021

Technology Description, Current Performance Metrics, and	Current TRL	Industry State of the Art Technology Performance
 Performance Goals BHT-200 Hall Effect Propulsion System: Hall Effect Thruster Hollow Cathode Power Processing Unit (PPU) Thrust = 13 mN at lsp = 1375 s (discharge power = 200 W) Lifetime > 2,000 h Efficient throttling to lower power Xenon or Iodine fuel (Iodine reduces fuel volume by 2/3) 	8 - 9 TRL By May 2021 8 - 9	No comparably sized Hall effect thruster has been flown by US industry competitors Foreign thruster with similar power, lower TRL, no iodine capability: • KM-45 (Russia, Keldysh Research Center) • Power range = 200 – 450 W • Thrust= 10-28 mN at lsp = 1250 - 1500 s • Lifetime = TBD • Xenon fuel • TRL 6 (qualified)
Technology Development Challenges to Meet TRL Goal		Potential HPD Science Application (Optional)

et ikl Goai ient chaneng

 All-Xenon system is presently TRL 8-9 (thruster, cathode, PPU, feed system) First US developed Hall thruster to fly in space (on TacSat-2) PPU first flow on FalconSat-5 Iodine compatible thruster developed with NASA and USAF funding Hybrid Iodine-Xenon (thruster-cathode) system is TRL 5-6 Qualified flight model thruster (TRL 6) delivered to NASA for iSat TDM Iodine feed system developed by NASA MSFC for iSat TDM All-Iodine system is TRL 3 Iodine fueled cathode is TRL 3 	 Propulsion for a technology demonstration rideshare (up to ESPA class) launching with the IMAP Propulsion system is well sized for ESPA-class spacecraft & large CubeSats Orbit transfers from to Earth-Sun L1 Station-keeping in L1 General applications: orbit maintenance including station-keeping, orbit raising, orbit lowering (including de-orbiting), phase changes, inclination changes and interplanetary transfers.
Contact Information	Additional Comments
Peter Hruby (phruby@busek.com) Dr. James Szabo (jszabo@busek.com) Busek Co. Inc. Natick, MA 508) 655-5565	 BHT-200 system has flight heritage with xenon Iodine system developed for Iodine Satellite (iSat) Technology Demonstration Mission with USAF and NASA funding (mission status TBD) Hybrid Iodine-Xenon (thruster-cathode) system would provide many benefits (cost, volume, mass) with respect to all-xenon system and most benefits of all- iodine system with much less risk

BHT-200 Hall Thruster System

BHT-200

- Flight proven thruster, cathode, heritage PPU (compact PPU in development)
- Flight-proven Xenon feed system
- Xe system ground-tested 2,000 hours to-date, no major performance degradation
- Iodine compatible flight thrusters delivered to NASA
- Complete systems designed, integrated, tested, filled, delivered by Busek.
- Flight: TacSat 2, FalconSat-5
- Upcoming Flight: FalconSat-6 (Xe)

BHT-200: PERFORMANCE	
Nominal Thrust (mN)	13 (5-20)
Specific Impulse (s)	1,375 (1,000 – 1,500)
Thruster Power (W)	200
Thruster Mass (kg)	1.1*
Thruster Volume (U)	1*
Lifetime (hrs)	>1,800
Delta-v (m/s, 20kg spacecraft)	525
Propellants	Xe, I ₂

* Excludes feed system & electronics

Science **Mission Directorate**

Technology Title: 60	500 W Class Plasma Propulsion System for Small Spacecraft
Affiliation: B	Busek Co. Inc., Natick, MA

Assumptions: Technology required to be at TRL 5 by 2021

Technology Description, Current Performance Metrics, and	Current TRL	Industry State of the Art Technology Performance
Performance GoalsBHT-600 Hall Effect Propulsion System:• Hall Effect Thruster• Hollow Cathode• Power Processing Unit (PPU)• Thrust = 38 mN at lsp = 1500 s (thruster power = 600 W)• Lifetime (estimated) = 10,000 hEfficient throttling from 300 W to 600 WSpecific impulse up to 1700 sXenon or lodine fuel (lodine reduces fuel volume by 2/3)	5 TRL By May 2021 6 - 8	No comparably sized Hall effect thruster offered by US industry competitors Russian thrusters offer similar performance, but with shorter lifetime and no iodine capability: • SPT-70 (Russia, OKB Fakel) • Thrust= 40 mN at lsp = 1500 s (nominal power = 700 W) • Lifetime = 3100 h • Xenon fuel • TRL 9 (flew on-orbit)
Technology Development Challenges to Meet TRL Goal		Potential HPD Science Application (Optional)

ient chaneng et ind Goal

 All-Xenon system is presently TRL 5 (thruster, cathode, feed system) Not yet qualified for flight Xenon duration test (5,000 - 10,000 h) begins in 2018 (thruster, cathode) PPU is Engineering Model (TRL 4-5) designed for high radiation environments Hybrid lodine-Xenon (thruster-cathode) system is TRL 4 Iodine duration test (1200 h) completed (iodine thruster, xenon cathode) Iodine feed system is TRL 4 (flight system developed for iSat TDM) All-Iodine system is TRL 3 Iodine fueled cathode is TRL 3 	 Propulsion for a technology demonstration rideshare (up to ESPA class) launching with the IMAP Propulsion system is well sized for ESPA-class small spacecraft Orbit transfers from to Earth-Sun L1 Station-keeping in L1 General applications: orbit maintenance including station-keeping, orbit raising, orbit lowering (including de-orbiting), phase changes, inclination changes and interplanetary transfers.
Contact Information	Additional Comments
Peter Hruby (phruby@busek.com) Dr. James Szabo (jszabo@busek.com) Busek Co. Inc.	 BHT-600 system is being actively developed toward flight with USAF and NASA funding Delivery of flight qualified xenon fueled system to AFRL planned for 2020 Hybrid lodine-Xenon (thruster-cathode), system would provide many benefits.

BHT-600 Hall Thruster System

BHT-600 System

- High TRL with flight-proven components
- Compact PPU (BPU-600c) in development
- Flight-proven Xenon feed system
- Xe System undergoing >5k hour test beginning 2018
- Mission-enabling hybrid Xenon/Iodine thruster tested >1,200 hrs
- 100kRAD TID power processing unit with NASA-approved parts list.
- Up to 6km/sec delta-V for ESPA-class missions

BHT-600: PERFORMANCE	
Nominal Thrust (mN)	9 – 38
Specific Impulse (s)	1,000 - 1,710
Thruster Power (W)	600 (700 input)
Thruster Mass (kg)	2.5*
Lifetime (hrs)	10,000**
Propellants	Xe, I ₂

* Excludes feed system & electronics, **predicted

Technology Title:	BIT-3 Iodine RF Ion Propulsion System for CubeSats
Affiliation:	Busek Co. Inc.
Assumptions: Technology required to be at TRL 5 by 2021	

Technology Description, Current Performance Metrics, and Performance Goals

- BIT-3 is a compact, CubeSat friendly electric propulsion system using solid iodine as propellant. The system centers on a 2.5cm gridded ion engine using RF discharge. Complimentary subsystem technology includes the industry's first flight-ready iodine cathode (RF type), a miniature gimbal, a compact Power Processing Unit (PPU), and an ultra-lightweight iodine storage and feed system.
- BIT-3 system operates in the 55-80W range with thrust-to-power ratio around 15mN/kW. Max thrust and Isp is 1.2mN and 2,300sec, respectively. Designed life of the thruster is >20,000 hours (theoretical); 4,000-hr test ongoing
- Future goals of BIT-3 include power upgrade and extended life test

Technology Development Challenges to Meet TRL Goal

Current TRL

5-6

TRL By

7 - 8

Industry State of the Art Technology Performance • Ariane Group (Germany) RIT-μX gridded RF ion engine: 50W input, 0.5mN thrust (10mN/kW), 3,000sec lsp, Xenon propellant

- JAXA/University of Tokyo (Japan) μ1 gridded microwave ion engine: 32W input, 0.3mN thrust (9.4mN/kW), 1,200sec lsp, Xenon propellant
- ThrustMe (France) cathodeless gridded RF ion engine: 60W input, May 2021 0.7mN thrust (11.7mN/kW), 1,000sec lsp, Xenon or Iodine propellant
 - Busek (U.S.) BHT-200 Hall Effect thruster: 250W input, 12.8mN thrust (51mN/kW), 1,380sec Isp, Xenon or Iodine propellant

Potential HPD Science Application (Optional)

 BIT-3 technology can be further matured via long-duration ground testing and inorbit demonstration Ground testing can be challenging due to potential interactions between iodine plume and vacuum facility (may cause pre-mature test hardware degradation) Current launch opportunity is still 2 years away (SLS EM-1); would be helpful to first prove the system out in a LEO demo mission in the near term 	 BIT-3's high deltaV capability can enable small satellite (e.g. 6U CubeSat) flying to Earth-Sun L1 from GTO for long-duration solar observation BIT-3 can enable small "sun shade" satellite flying in front of a main space telescope (providing occultation) for observation of solar corona, with the spacecraft situated in LEO on a non-Keplerian orbit BIT-3 can enable formation flight in sun-synchronous orbit for distributed spatial or temporal solar measurements
Contact Information	Additional Comments
Contact Information Peter Hruby (phruby@busek.com) Dr. Michael Tsay (mtsay@busek.com)	Additional Comments BIT-3 development program is sponsored by NASA Small Spacecraft Technology Program (SSTP) under Space Technology Mission Directorate (STMD)

BIT-3 Iodine RF Ion Propulsion System

- Iodine-fueled BIT-3 systems will be flying on Lunar IceCube and LunaH-Map (SLS EM-1 launch in 2020)
 - 1.6U volume, 2.9kg wet mass
 - 2.5cm gridded RF ion thruster and 1cm RF cathode
 - 2-axis gimbal with +/- 10° slew
 - Light weight, rad-tolerant ion propulsion PPU
 - Innovative iodine feed system w/ 1.5kg solid iodine propellant (zero-pressure launch)
 - Available 33kN-sec total impulse, SOTA
- Busek has proven iodine performance is on par with legacy EP propellant xenon
- Flight hardware deliveries beginning Summer 2018
- Endurance test up to 4,000 hrs commencing Summer 2018

BIT-3 System Characteristics			
Thrust	0.88mN nominal, 1.2mN max		
Total Isp	1,630 sec nominal, 2,300 sec max		
Input power	65W nominal, 80W max		
Mass	1.4kg dry / 2.9kg wet		
Volume	1.6 U		
Delta-V	~2 km/s for 6U CubeSats		

BIT-3 Flight System

BIT-3 at Max Power on Iodine

Power Processing Unit (500g)

Iodine Feed System (450g Dry)

Lunar IceCube (6U CubeSat) in Flight Configurations Photo Credit: Morehead State University

Science Mission Directorate

Technology Title:	BET-300-P Multi-Axis Modular Electrospray Reaction Control System	
Affiliation:	Busek	
Assumptions: Technology required to be at TRL 5 by 2021		

Technology Development Challenges to Meet TRL Goal

Lifetime (total impulse) is a primary challenge to all electrospray thrusters

- BET-300-P has demonstrated highest total impulse from a miniaturized electrospray thruster to date
- Ongoing funding (NASA GSFC) to address impulse-limiting issues

Inflight demonstration of critical features

PPU design and charge neutralization

Contact Information

Pete Hruby (phruby@busek.com) Dr. Dan Courtney (dcourtney@busek.com)

Busek Co. Inc. 11 Tech Cir, Natick, MA 01760 (508) 655-5565

Potential HPD Science Application (Optional)

Precision body pointing to milli-arcsecond resolution

• Enables highly stable platforms and therefore long integration times; minimizing the need for large apertures

Precision position control to sub µm scales

Numerous applications including on-demand/free-floating occultation, artificial guide stars and precisely spaced formation flights of distributed instruments

Additional Comments

BET-300P (passive) Electrospray Thruster System

Specifications: *Directly measured unless noted*

Thruster head size	~5 x 5 x 5 cm
Mass (wet)	~230g (not optimized) <150g anticipated
Propellant load	16 g
Total impulse	~135Ns*
Nominal thrust	~5-150 μN
Maximum thrust	300µN**
Control modes	Throttleable from <5µN to >150µN
Thrust control resolution	<500nN
Minimum impulse bit	<3µNs @ 30µN max set point <5µNs @ 65µN max set point
Minimum pulse duration	~50ms
Thruster head power (nom./ max)	~2.5W/6W
Neutralization	Busek CNT cathode, one per 6 BET-300-P
PPU Architecture (expected)	Simultaneous control of up to 6 axes Commanded thrust and/or PWM control
PPU Status	Conceptual; to be derived from TRL5/6 BET- 100µN single axis PPU
Nominal system power (estimated)	~2-4W +3.5W per active thruster
PPU Size / mass (estimated)	~250g, 2 X 10cm x 10cm boards
*Based on propellant load, lifetime not yet established **300µN demonstrated on prototype system	

Distributed Architecture

Electrospray Precision Attitude Control

Precision Attitude Control

- Sub-milliarcsec control
- Ideal for long integrating stares
- Throttling by >25x supports fast slews
- Imaging, laser comms., scientific measurements

Precision Trajectory Control

- Ideal for high precision formation flight
 - Non Keplarian orbits
 - Occultation nanosats
 - Artificial stars
- Position control at nm scales
- Distributed apertures/instruments

